Simulink® Check™
Jseralonrn

4 :

MATLAB&SIMULINK

R2019b -) MathWorks:

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Check™ User's Guide
© COPYRIGHT 2004-2019 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

Revision History

September 2017 Online only New for Version 4.0 (Release 2017b)

March 2018 Online only Revised for Version 4.1 (Release 2018a)
September 2018 Online only Revised for Version 4.2 (Release 2018b)
March 2019 Online only Revised for Version 4.3 (Release 2019a)
September 2019 Online only Revised for Version 4.4 (Release 2019b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

Getting Started

1]

Simulink Check Product Description 1-2
Key Features 1-2
Check for Standards Compliance in Your Model 1-3
Detect and Fix Model Advisor Check Violations by Using Edit-
Time Checking i 1-3
Detect Model Advisor Check Violations Interactively 1-4
Collect Model Metric Data by Using the Metrics Dashboard
... 1-8
Analyze MetricData 1-8
Drill-In to Explore MetricData 1-10
Refactor Model Based on MetricData 1-11
Refactor Models with the Clone Detector App and Model
TransformerTool 1-13
Identify and Replace Clones with Links to Library Blocks . . . 1-13
Replace Qualifying Modeling Patterns with Variant Blocks . . 1-15
Create a Simplified, Standalone Model Using the Model Slicer
Tool e 1-19

Verification and Validation

2|

Test Model Against Requirements and Report Results 2-2
Requirements - Test Traceability Overview 2-2
Display the Requirements 2-3
Link RequirementstoTests 24

iii

iv

Runthe Test oo s 2-5
Reportthe Results 2-6
Analyze a Model for Standards Compliance and Design Errors
... 2-8
Standards and Analysis Overview 2-8
Check Model for Style Guideline Violations and Design Errors
... 2-8
Perform Functional Testing and Analyze Test Coverage 2-11
Incrementally Increase Test Coverage Using Test Case
Generationc.i i e 2-11
Analyze Code and Test Software-in-the-Loop 2-14
Code Analysis and Testing Software-in-the-Loop Overview . . 2-14
Analyze Code for Defects, Metrics, and MISRA C:2012 2-14

Checking Systems Interactively

3|

Check Model Compliance by Using the Model Advisor 3-2
Model Advisor OVEIVIEWcviviiiiien e, 3-2
Run Model Advisor Checks and Review Results 3-5
Check Your Model by Using Edit Time Checks 3-8
View and Configure the Model Advisor Edit-Time Checks . . . 3-11
Exclude Blocks From the Model Advisor Check Analysis 3-14
Model Advisor Exclusion Overview 3-14
Save Model Advisor Exclusions in a Model File 3-15
Save Model Advisor Exclusions in Exclusion File 3-15
Create Model Advisor Exclusions 3-16
Review Model Advisor Exclusions 3-17
Manage Exclusions 3-18
Exclude Blocks from Edit Time Checking 3-20
Limit Model Checks by Excluding Gain and Outport Blocks .. 3-21
Transform Model to Variant System 3-26
Example Model 3-26
Perform Variant Transform on Example Model 3-28
Model Transformation Limitations 3-30

Contents

Enable Component Reuse by Using Clone Detection 3-32

Exact Clones and Similar Clones 3-32
Identify Exact and Similar Clones 3-32
Replace Clonesot 3-38
Identifying and Replacing Clones in Model Libraries 3-39
Check the Equivalency of the Model 3-39
Improve Model Readability by Eliminating Local Data Store
Blocks 3-41
Example Model 3-41
Replace Data Store Blocks 3-43
Limitations 3-45

Improve Efficiency of Simulation by Optimizing Prelookup

Operation of Lookup Table Blocks 3-46
Example Model 3-46
Merge Prelookup Operation 3-47
Conditions and Limitations 3-50

Model Checks for DO-178C/D0O-331 Standard Compliance .. 3-52
Model Checks for High Integrity Systems Modeling 3-53
Model Checks for High Integrity Systems Modeling 3-62
High Integrity Systems Modeling Checks 3-54
Model Checks for IEC 61508, IEC 62304, ISO 26262, and EN
50128 Standard Compliance 3-70
Model Checks for High Integrity Systems Modeling 3-71
Model Checks for MathWorks Automotive Advisory Board
(MAAB) Guideline Compliance 3-79
Model Checks for Japan MATLAB Automotive Advisory Board
(JMAAB) Guideline Compliance 3-85
Model Checks for MISRA C:2012 Compliance 3-102
Model Checks for Secure Coding (CERT C, CWE, and ISO/IEC
TS 17961 Standards) 3-103
Model Checks for Requirements Links 3-104

vi

Contents

Generate Model Advisor Reports 3-105
Generate Results Report When Executing Model Advisor Checks

... 3-105
Generate Results Report After Executing Model Advisor Checks

... 3-105

Modify Template for Model Advisor Check Results Report . 3-106

Check Systems Programmatically

4

Checking Systems Programmatically 4-2
Create a Function for Checking Multiple Systems 4-3
Create a Function for Checking Multiple Systems in Parallel
... 4-5
Archive and ViewResults 4-7
Archive Results 4-7
View Results in Command Window 4-7
View Results in Model Advisor Command-Line Summary Report
... 4-8
View Results in Model Advisor GUT 4-9
View Model Advisor Report 4-10
Archive and View Model Advisor Run Results 4-11

Model Metrics

S|

Collect and Explore Metric Data by Using the Metrics
Dashboard
Metrics Dashboard Widgets
Size ..
Modeling Guideline Compliance
Architecture
Metric Thresholds

Dashboard Limitations 5-9

Collect Model Metrics Using the Model Advisor 5-11
Create a Custom Model Metric for Nonvirtual Block Count . 5-13
Collect Model Metrics Programmatically 5-18
Model Metric Data Aggregation 5-22

How Model Metric Aggregation Works 5-22

Access Aggregated MetricData 5-24
Identify Modeling Clones with the Metrics Dashboard 5-27

Collect Compliance Data and Explore Results in the Model
AdVisor 5-30

Collect Metric Data Programmatically and View Data Through
the Metrics Dashboard 5-35

Fix Metric Threshold Violations in a Continuous Integration

Systems Workflow 5-39
Project Setup 5-40
GitLab Setup 5-42
Jenkins Setup 5-42
Continuous Integration Workflow 5-43

Customize Metrics Dashboard Layout and Functionality 5-47

Overview of Customizing the Model Advisor

6/

Model Advisor Customization 6-2
Requirements for Customizing the Model Advisor 6-2

viii

Create Model Advisor Checks

7

Contents

Create Model Advisor Checks Workflow
Customization File Overview
Common Utilities for Creating Checks
Create and Add Custom Checks - Basic Examples
Add Custom Check to by Product Folder

Create Customized Pass/Fail Check
Create Customized Pass/Fail Check with Fix Action

Create Customized Pass/Fail Check with Detailed Result

Collections

Create Check for Model Configuration Parameters
Create a Data File for a Configuration Parameter Check

Create Check for Diagnostics Pane Model Configuration

Parameters i
Data File for Configuration Parameter Check

Define Checks for Supported or Unsupported Blocks and

Parameters
Example
Create Block Parameter Constraints
Create Model Advisor Checks from Constraints

RegisterChecks
Create sl customization Function
Register Checks

Define Startup and Post-Execution Actions Using Process

Callback Functions
Process Callback Function Arguments
Process Callback Function

Tips for Using the Process Callback Function in a

sl customization File

Define Custom Checks
About Custom Checks i
Contents of Check Definitions

Display and Enable Checks
Define Where Custom Checks Appear
Check Definition Function,
Define Check Input Parameters
Define Model Advisor Result Explorer Views
Define Check Actions

Create Callback Functions and Results
About Callback Functions
Informational Check Callback Function
Simple Check Callback Function
Detailed Check Callback Function
Check Callback Function with Hyperlinked Results
Check Callback Function for Detailed Result Collections
Action Callback Function
Check With Subchecks and Actions
Basic Check with Pass/Fail Status

Define the Compile Option for Custom Checks
Checks for Models That Are Not Compiled by the Model Advisor
Checks That Require the Model to be Compiled and Simulated

by the Model Advisor un...
Checks That Evaluate Code Generation Readiness of the Model
Create Custoﬁi Check 't(') 'E'V'ailie;t'e Active and Inactive Variant

PathsfromaModel

Exclude Blocks From Custom Checks

Format CheckResults
FormatResults
Format Text i
Format Lists i i
Format Tables
Format Paragraphs
Formatted Output
Format Linebreaks
FormatImages i

ix

X

Contents

Create Custom Configurations by Organizing Checks
and Folders

8|

Create Custom Configurations
Create Configurations by Organizing Checks and Folders
Create Procedural-Based Configurations

Organize Checks and Folders Using the Model Advisor
Configuration Editor
Overview of the Model Advisor Configuration Editor
Open the Model Advisor Configuration Editor
Organize Checks and Folders Using the Model Advisor
Configuration Editor

Organize Customization File Checks and Folders
Customization File Overview
Register Tasks and Folders
Define Custom Tasksiiiiiinn....
Define Custom Folders
Customization Example

Verify and Use Custom Configurations
Update the Environment to Include Your sl customization File

Customize Model Advisor Check for Nondefault Block
Attributes

Automatically Fix Display of Nondefault Block Parameters .

8-12
8-12
8-13
8-14
8-15
8-17

8-18

8-18

8-18

8-20

8-21

Create Procedural-Based Model Advisor

9

Configurations

Create Procedures 9-2
What Isa Procedure? 9-2
Create Procedures Using the Procedures API 9-2
Define Procedures 9-2

Create Procedural-Based Configurations 9-5
Overview of Procedural-Based Configurations 9-5
Create a Procedural-Based Configuration 9-6

Add Checks and Tasks to the Model Advisor 9-9

Deploy Custom Configurations

10|

Overview of Deploying Custom Configurations 10-2
About Deploying Custom Configurations 10-2
Deploying Custom Configurations Workflow 10-2

How to Deploy Custom Configurations 10-3

Manually Load and Set the Default Configuration 10-4

Model Slicer

11|

Highlight Functional Dependencies 11-2
Highlight Dependencies for Multiple Instance Reference
Models 11-9
Refine Highlighted Model 11-13
Define a Simulation Time Window 11-13

xi

xii

Contents

Exclude Blocks
Exclude Inputs ofa SwitchBlock

Refine Dead Logic for Dependency Analysis
Analyzethe Dead Logic

Create a Simplified Standalone Model

Highlight Active Time Intervals by Using Activity-Based Time
Slicing
Highlighting the Active Time Intervals of a Stateflow State or
Transition
Activity-Based Time Slicing Limitations and Considerations

Workflow for Dependency Analysis
Dependency Analysis Workflow
Dependency Analysis Objectives

Configure Model Highlight and Sliced Models
Model Slice Manageriiiiiiinnn..
Model Slicer Options,
Storage Options i,
Refresh Highlighting Automatically
Sliced Model Options,
Trivial Subsystems
Inline Content Options

Model Slicer Considerations and Limitations
Model Compilation
Model Highlighting and Model Editing
Standalone Sliced Model Generation
Sliced Model Considerations
Port Attribute Considerations
Simulation Time Window Considerations
Simulation-based Sliced Model Simplifications
Starting Points Not Supported
Model Slicer Support Limitations for Simulink Software

Features e
Model Slicer Support Limitations for Simulation Stepper . .

11-34

11-34

11-42
11-42

11-43

11-47
11-47
11-48

11-50
11-50
11-50
11-50
11-51
11-51
11-52
11-52

11-54
11-54
11-54
11-54
11-55
11-55
11-56
11-57
11-58

11-58
11-59

Model Slicer Support Limitations for Simulink Blocks 11-59
Model Slicer Support Limitations for Stateflow 11-60

Using Model Slicer with Stateflow 11-63
Model Slicer Highlighting Behavior for Stateflow Elements

... 11-63

Using Model Slicer with Stateflow State Transition Tables . 11-64
Support Limitations for Using Model Slicer with Stateflow

... 11-64
Isolating Dependencies of an Actuator Subsystem 11-65
Choose Starting Points and Direction 11-65
View Precedents and Generate Model Slice 11-67
Isolate Model Components for Functional Testing 11-70
Isolate Subsystems for Functional Testing 11-70
Isolate Referenced Model for Functional Testing 11-74
Refine Highlighted Model by Using Existing .slslicex or Dead
LogicResults 11-80
Simplification of Variant Systems 11-83
Use the Variant Reducer to Simplify Variant Systems 11-83
Use Model Slicer to Simplify Variant Systems 11-83
Programmatically Resolve Unexpected Behavior in a Model
with Model Slicer 11-85
Prerequisites 11-85
Find the Area of the Model Responsible for Unexpected
Behavior 11-85
Isolate the Area of the Model Responsible for Unexpected
Behavior 11-89
Investigate the Sliced Model and Debug the Source Model
... 11-93
Clean Up ..o vt 11-98
Refine Highlighted Model Slice by Using Model Slicer Data
Inspector 11-99
Investigate Highlighted Model Slice by Using Model Slicer Data
Inspector 11-99
Debug Slice Simulation by Using Fast Restart Mode 11-106
Simulate and Debug a Test Case in a Model Slice 11-106

xiii

Isolate Referenced Model for Functional Testing 11-115
Analyze the Dead Logic 11-121

Investigate Highlighted Model Slice by Using Model Slicer
DataInspector 11-127

xiv Contents

Getting Started

* “Simulink Check Product Description” on page 1-2
* “Check for Standards Compliance in Your Model” on page 1-3
* “Collect Model Metric Data by Using the Metrics Dashboard” on page 1-8

+ “Refactor Models with the Clone Detector App and Model Transformer Tool”
on page 1-13

* “Create a Simplified, Standalone Model Using the Model Slicer Tool” on page 1-19

1 Getting Started

Simulink Check Product Description

1-2

Verify compliance with style guidelines and modeling standards

Simulink Check provides industry-recognized checks and metrics that identify standard
and guideline violations during development. Supported high-integrity software
development standards include DO-178, ISO 26262, IEC 61508, IEC 62304, and
MathWorks Automotive Advisory Board (MAAB) Style Guidelines. Edit-time checks
identify compliance issues as you edit. You can create custom checks to comply with your
own standards or guidelines.

Simulink Check provides metrics such as size and complexity that you can use to evaluate
your model’s architecture and compliance to standards. A consolidated metrics dashboard
lets you assess design status and quality. Automatic model refactoring lets you replace
duplicate design elements, reduce design complexity, and identify reusable content. The
Model Slicer tool isolates problematic behavior in a model and generates a simplified
model for debugging.

Support for industry standards is available through IEC Certification Kit (for ISO 26262
and IEC 61508) and DO Qualification Kit (for DO-178).

Key Features

+ Edit-time checking to identify model guideline violations

» Compliance checking for MAAB style guidelines and high-integrity system design
guidelines (DO-178, ISO 26262, IEC 61508, IEC 62304)

» Compliance checking for secure coding standards (CERT C, CWE, ISO/IEC TS 17961)
* Custom check authoring with Model Advisor Configuration Editor

* Maetrics for computing model size, complexity, and readability

» Dashboard providing consolidated view of metrics and project status

* Model refactoring with clone detection and model transformations

Check for Standards Compliance in Your Model

Check for Standards Compliance in Your Model

With Simulink Check, the Model Advisor can check for model conditions that cause
generation of inefficient code or code unsuitable for safety-critical applications.

The Model Advisor produces a report that lists the suboptimal conditions or settings that
it finds. The Model Advisor proposes better model configuration settings.

Detect and Fix Model Advisor Check Violations by Using Edit-
Time Checking

In the Model Advisor, you can check that your model complies with certain guidelines
while you edit.

Open model sf boiler.

To use edit-time checking, on the Modeling tab, select Model Advisor > Edit-Time
Checks.

The highlighted blocks and subsystems indicate a compliance issues. Place your
cursor over the highlighted block and click the warning icon. A dialog box provides a
description of the warning. For detailed documentation on the check that detected
the issue, click the question mark. In this case, the warning indicates that the
subsystem block name contains incorrect characters.

3 Open the Bang-Bang Controller chart by double-clicking it. The Model Advisor
highlights multiple states. Place your cursor over the warning of the Off state to
review the issue.

1-3

1 Getting Started

Heater ?
Off
entry: turn_boiler(OFF)
Flash FEutiers
fter(5,
{en: flash_LED() __/H it
T]
f
after(20,sec) after(40,sec) f
[cold ()]
[Heater.On.warm()]
§
On
I_

4 Select the warning. The Model Advisor indicates that there must be a new line after
en: to comply with the MAAB guidelines. In your model, place your cursor after en:
and press Enter. A new line is added and the warning is cleared.

Detect Model Advisor Check Violations Interactively

You can interactively check that your model complies with DO-178C/D0-331 guidelines by
using the Model Advisor.

1 Open model sf boiler.
2 On the Modeling tab, select Model Advisor.
3 Select the top-level model sf boiler from the System Hierarchy and click OK.

1-4

Check for Standards Compliance in Your Model

) System Selector - Model Advisor X

Choose a system from the hierarchy: "

System Hierarchy
~ sf boiler
Bang-Bang Controller
Boiler Plant model

< >

4 In the left pane, in the By Product > Simulink Check > Modeling Standards
>DO0-178C/DO0-331 Checks folder, select:

* Check safety-related diagnostic settings for solvers
* Check safety-related diagnostic settings for sample time
* Check safety-related optimization settings for logic signals

5 Right-click the DO-178C/D0-331 Checks node, and then select Run Selected
Checks.

Update Model to Reach Compliance

1 Toreview the configuration parameters that are not set to the recommended values,
click Check safety-related optimization settings for logical signals.

1-5

1 Getting Started

1-6

Check safety-related model referencing settings

Check safety-related solver settings for solver options

Check safety-related solver settings for tasking and sample-tim
Check safety-related diagnestic settings for solvers

Check safety-related diagnostic settings for sample time

Check safety-related optimization settings for logic signals
Check safety-related block reduction optimization settings
Check safety-related optimization settings for application lifespz
Check safety-related optimization settings for loop unrolling thr
Check safety-related optimization settings for data initialization
Check safety-related optimization settings for data type convers
Check safety-related optimization settings for division arithmeti|
Check safety-related optimization settings for specified minimur
Check safety-related code generation settings for comments
Check safety-related code generation interface settings

Check safety-related code generation settings for code style
Check safety-related code generation symbols settings

Check safety-related diagnostic settings for compatibility

Check safety-related diagnostic settings for parameters

Check safety-related diagnostic settings for Merge blocks
Check safety-related diagnostic settings for made! initialization
Check safety-related diagnostic settings for data used for debug
Check safety-related diagnostic settings for signal connectivity
Check safety-related diagnestic settings for bus connectivity
Check safety-related diagnostic settings that apply to function-c
Check safety-related diagnestic settings for type conversions

Fhark eafehuralated diaannctic cettinas far madel referencing

O000O0OoonOo0Oo0O0oonDoDREROO0
g i e e s i e e e e e e e =4 = i

Check safety-related optimization settings for logic signals
Analysis
hisl_0045: Implement logic signals as Boolean data (vs. double)

Check optimization settings in the model configuration that apply to logic signals and might impact safety.

Run This Check

Result: /i Warning
Check optimization settings in the model configuration that apply to logic signals and might impact safety:

Warning
The model configuration parameters are not set to the recommended values specified in the data file.

Eﬂﬂ_ e e e T

Warning Implement logic signals as Boolean data (vs. double) (BooleanDataType

Recommended Action
Follow the links in the result table to modify the model configuration parameters,

Action
Modify model configuration settings.

2 To update the optimization parameters to the recommended values, click the Modify
Settings button in the Action section of the right pane. The Model Advisor updates
the parameters to the recommended value and details the results.

Action

Modify model configuration settings.

Modify Settings

Result:

The following model configuration parameters have been modified as specified in the data file:

Previous Value | Current Value

Implement logic signals as Boolean data (vs. double

BooleanDataType) off on

3 Repeat steps 1 and 2 for the other two checks: Check safety-related diagnostic
settings for solvers and Check safety-related diagnostic settings for sample

time.

4 To verify that your model now passes, rerun the selected checks.

See Also

Display an HTML Report of Check Results

To generate a results report of the Simulink Check checks, select the DO-178C/D0-331
Checks node, and then, in the right pane click Generate Report.

See Also
More About

. “Check Model Compliance by Using the Model Advisor” on page 3-2
. “Create Model Advisor Checks Workflow” on page 7-2

1-7

1 Getting Started

Collect Model Metric Data by Using the Metrics
Dashboard

1-8

To collect model metric data and assess the design status and quality of your model, use
the Metrics Dashboard. The Metrics Dashboard provides a view into the size,
architecture, and guideline compliance for your model.

1 Open the model by typing sldemo fuelsys.
2 On the Apps tab, open the Metrics Dashboard by clicking Metrics Dashboard.
3 To collect metric data for this model, click the All Metrics icon.

All Metrics

Analyze Metric Data

The Metrics Dashboard contains widgets that provide visualization of metric data in these
categories: size, modeling guideline compliance, and architecture. By default, some
widgets contain metric threshold values. These values specify whether your metric data is
compliant (appears green in the widget) or produces a warning (appears yellow in the
widget). Metrics that do not have threshold values appear blue in the widget. You can
specify noncompliant ranges and apply other Metrics Dashboard customizations. For
more information, see “Customize Metrics Dashboard Layout and Functionality” on page
5-47.

Collect Model Metric Data by Using the Metrics Dashboard

METRICS DASHEOARD
| 1 @ L> ég Show:
Cvtors Nexcarge Avoes
Dp'en pﬁ'ans Metrics
FILE | RUN | THRESHOLDS | z
SIZE
sldemo_fuelsys
Created by: The MathWorks, Inc. Revision: 1 742 1 Models 8 MATLABLOC 0 30 0
Collected 12/27/2018, 4:15:32 1 1 92
on: PM Wamings Blocks 1 Files 50 stateflow LOC System Interface
MODELING GUIDELINE COMPLIANCE ARCHITECTURE
Actual Reuse
f \ ’ » v
Potential Reuse
« - 0% 20% 40% 60% 30% 100%
88.4% 70.0%
High Integrity MAAB
A
315 Model Complexity I
0 20 40 &0 80 100
187
Blocks IIIII
0 20 40 &0 80 100
- - >
High Integrity MAAB
Model Advisor Check Issues
Stateflow LOC
0 20 40 &0 80 100
Code Ar)alyzer Dlagn_ostlc MATLAB LOC I
Warnings Warnings
0 20 40 &0 80 100

In the ARCHITECTURE section of the dashboard, locate the Model Complexity widget.
This widget is a visual representation of the distribution of complexity across the
components in the model hierarchy. For each complexity range, a colored bar indicates
the number of components that fall within that range. Darker green colors indicate more
components. In this case, several components have a cyclomatic complexity value in the
lowest range, while just one component has a higher complexity. This component has a

1-9

1 Getting Started

cyclomatic complexity above 30, which is the default threshold between compliant and
warning.

Drill-In to Explore Metric Data

To explore metric data in more detail, click an individual metric widget. For your selected
metric, a table displays the value, aggregated value, and measures (if applicable) at the
model component level. From the table, the dashboard provides traceability and
hyperlinks to the data source so that you can get detailed results.

To drill into model complexity details at the model, subsystem, and chart level, click
anywhere in the Model Complexity widget. In this example, the control logic chart
has a cyclomatic complexity value of 51, which is yellow because it is in the warning
range.

METRICS DETAILS

el

Dashboard

vIEW |

Cyclomatic complexity

]

@

Metric that calculates the cyclomatic complexity for model, subsystams and charts

Type

Chart

Model
Subsystem
MATLAE function
Subsystem
Subsystem
Subsystem
MATLAE function
MATLAE function
MATLAE function
Subsystem
Subsystem
Subsy:
Subsystem

m

Subsystem
Subsystem
Chart

Sunhcvctam

1-10

Component @ Path Qty Model » Model

Complexity Complexity (incl
Descendants)

control_logic sldemo_fuelsys/fuel_rate_control/contrel_logic 1 51 56

sldemo_fuelsys] 1 5 20

Speed.speed_estimate @ _ lsysifuel_rate_controlicontrol_logic/Speed.speed_estimate 1 3 3

fitheta) @ _s/Engine Gas Dynamics/Throttle & ManifoldThrottle/f(theta 1 2 2

Throttle @ __fuelsys/Engine Gas Dynamics/Throttle & Manifold/Throttle 1 2 B

Throttle & Manifold @ sldemo_fuelsys/Engine Gas Dynamics/Throttle & Manifold 1 2 10

switchable_compensation @ __elsysfiuel_rate_controlffuel_calc/switchable_compensation 1 2 2

EGO Sensor @ _/Engine Gas Dynamics/Mixing & Combustion/EGO Sensor 1 2 2

MATLAB Function @ _ mics/Throttle & Manifold/Intake Manifold/MATLAB Function 1 2 2

gipratio) @ _J/Engine Gas Dynamics/Throttle & Manifold/Throttie/g(pratio 1 2 2

feedforward_fuel_rate @ _.o_fuelsysifuel_rate_controlfuel_calcfeedforward_fuel_rate 1 2 2

airflow_calc @ sldemo_fuelsysfuel_rate_control/airflow_calc 1 1 1

Throttle throtile_estimate @ . ysffuel_rate_controlicontrol_logic/Throttle throttle_estimate 1 1 1

Pressure map_estimate @ _ IsysHuel_rate_controlicontrol_logic/Pressure map_estimate 1 1 1

Mixing & Combustion @ sldemo_fuelsys/Engine Gas Dynamics/Mixing & Combustion 1 1 3

fuel_rate_control @ sldemo_fuelsys/fuel_rate_control 1 1 62

Fueling_Mode.Running.Low_Emissions.Normal @ _ntrol_logic/Fueling_Mode Running.Low_Emissions.Normal 1 0 0

rich_mnda @ rata eontralifiel calefewitehable camneneatinnirich made 1 n n e

To see this component in the model, click the control logic hyperlink.

Collect Model Metric Data by Using the Metrics Dashboard

Ejs]demo_ﬁ.ldsvs » |Eifuel_rate_conb‘oi » ﬁcontm]_logic »

JER e b jPressure i iThrote iy jEpeed 'y
] 1 I 1] 1 I 1
I 1 I 1 | 1 | 1
[} 1] 1 | 1 | 1
] 1 (] 1 I I 1
e 4 e i # N e = e S
;'ﬁ;ﬁ -- ‘l,
' i T i
; 1] - o 1M i
I—p[oﬂa fiaeil) ~[Two 2 NC [Three ;. 1= Four |
W = 2 b S o |
SHE DEC DEC |
(Fuelng Mg
i Fuel_Disabled
{es_o=es i} &n:
| fuel_mode = DISABLED;
lfRul'*»ning | Py
| '\U ! [es_ispesd = max_speed]
(Low_Emissions v {Rich_Mixture :

s ﬁve{spaed
: /..j

|I [fin{Spaed.normal) & ...
| es_i.speed = (max_speed - hys]]
,

F 0 Warmu ':ﬂ‘: &n
| fusl_mode = LOW; fusl_mode = RICH;

[in{02.A.02 normal)]
I liniEad. \ ingle_Failure c . - |
A nfFa .One) e | [in{Fail Multi] A
e e P
L —

[niF ail .Mu!'.ij]\.l

enter{Fail Multi) Sh——“mdown—.'—\
1 =
=]
exit(Fail Multi)

Refactor Model Based on Metric Data

iormal [in{Fai.0na)]

=

[in{Fail Nane}]

Once you have used the dashboard to determine which components you must modify to
meet quality standards, you can refactor your model. For the Modeling Guideline
Compliance widgets, to fix issues, open the Model Advisor. For the Potential Reuse
widget, to create and link to library blocks, open the Clone Detection tool. Open the
Model Advisor and the Clone Detection tool by clicking respective buttons on the drill-in
details.

For this example, refactoring the control logic chart by moving logic into atomic
subcharts reduces the complexity for that component.

1-11

1 Getting Started

See Also

More About

. “Collect and Explore Metric Data by Using the Metrics Dashboard” on page 5-2
. “Model Metrics”

. “Collect Model Metrics Programmatically” on page 5-18

1-12

Refactor Models with the Clone Detector App and Model Transformer Tool

Refactor Models with the Clone Detector App and Model
Transformer Tool

With Simulink Check, you can use the Model Transformer tool, and the Clone Detector
app to refactor a model, improve model componentization and readability, and reuse
components within a model.

Identify and Replace Clones with Links to Library Blocks

You can use the Clone Detector app to find clones of components and identify
opportunities to reuse them. With the Clone Detector, you can:

* Identify subsystem clones.
* Create library blocks from clones.
* Create a model that replaces clones with links to library blocks.

To use the Clone Detector:

1 Open the example model ex clone detection.

addpath(fullfile(docroot, 'toolbox', 'simulink', 'examples'))
ex_clone detection

2 Save the model to the current folder on the MATLAB path.

1-13

1 Getting Started

1-14

ex_clone_detection

(E)—Dlﬂ Qutt outt i
]
@ & *
In2 I—.H
(? [> . U‘ariam‘&uuruul
ra\ 554 =55
B ——m L .
s ot rs\ iz
= &
= s =7 Variant Source2
Copyright 2017 The MathWarks Inc.
3 On the Apps tab, click Clone Detector. To open the Clone Detector app
programmatically, at the MATLAB command prompt type:
clonedetection('ex clone detection').
On the Clone Detector tab, click View and select Help, Results and Properties.
5 Click Find Clones.
The model contains three groups of clones. One group contains exact clones. Exact
clones are highlighted in pink. The other two groups contain similar clones. These
groups are highlighted in blue. Darker shades of blue indicate that the clones in
those groups are more similar than clones in groups with lighter shades of blue.
6 In the Clone Detection Actions and Results pane, in the Map Clone Groups to

Library tab, for the Library to place clones parameter, specify a library. If you
specify a new library name, the app creates the library.

Refactor Models with the Clone Detector App and Model Transformer Tool

7 In the Clone Detector tab, click Replace Clones.

8 The refactored model contains links to the library blocks in the
newLibraryFile.slx file.

After you refactor, you can remove the latest changes from the model. In the Clone
Detection Actions and Results pane, in the Logs tab, open the latest log and click
Restore.

Each time you refactor a model, the app creates a backup model in the folder named with
the prefix m2m_ plus the model name. If you have a Simulink Test license, you can verify
the equivalency of the refactored model and the original model. Click Check
Equivalency.

Replace Qualifying Modeling Patterns with Variant Blocks

To improve model componentization by replacing qualifying modeling patterns with
Variant Source and Variant Subsystem blocks, use the Model Transformer tool.

The ex variants transformer model contains several modeling patterns that qualify
for transformation into variant blocks.

1-15

1 Getting Started

9.9 ; | -,~\-

-3

casa[1]: +
{2} #in1 = [Et.lﬂ *
cama [23]
v
[(] S— it
C) ul case [4]:
v
[(] S— Y [Elluu merge —»{ 2)
case [5]:
v
(50— » it »
default: l
clefault: gl »
= {6 ——»ini ouz|()

Copyright MathWoaorks 2017

1 Open the example model ex variants transformer by entering these commands
at the MATLAB command line:

1-16

Refactor Models with the Clone Detector App and Model Transformer Tool

addpath(fullfile(docroot, 'toolbox', 'simulink', 'examples'))
ex_variants transformer

2 Save the model to your working folder.

On the Apps tab, open the Model Transformer tool by selecting Model Transformer.
Or, in the Command Window, type:

mdltransformer(‘ex variants transformer’)

(2 Model Transformer - ex_variants_transformer —]
Edit Help
e[e
Model Transformer
+ @ Model Transformer
¥ [Transformations Model Transformer

=] Transform model to v%iant system
=] Eliminate data store blocks
=] Transform table lookup into prelookup and interpolation

Model Transformer

Use the Model Transformer tool to create models that contain these
transformations:

» Replace qualifying modeling patterns with variant blocks.

» Replace Data Store blocks with blocks that make data dependency explicit.

» Replace qualifying Lookup Table blocks with Interpolation blocks and a shared
Prelockup Block.

If you do not want to perform both transformations at once, select these checks
one at a time.

Run Selected Checks:

Help

Click Transform model to variant system.

5 Click Run This Check. In the Analysis section, the Result table contains a list of
system constants that qualify to be part of condition expressions in Variant Source or
Variant Subsystem blocks.

6 Click Refactor Model.

7 Your working folder contains a folder called m2m_ex variants transformer. This
folder contains the transformed model gen0@ ex variants transformer.

8 In the Action section, the Results table contains hyperlinks to the original and
transformed models.

The Eliminate data store blocks allows you to replace data stores with blocks that
improve model readability by making data dependency explicit. For an example, see
“Improve Model Readability by Eliminating Local Data Store Blocks” on page 3-41.

1-17

1 Getting Started

1-18

The Transform table lookup into prelookup and interpolation check allows you to
replace Lookup Table blocks into a single shared Prelookup block and multiple
Interpolation blocks. For an example, see “Improve Efficiency of Simulation by Optimizing
Prelookup Operation of Lookup Table Blocks” on page 3-46.

See Also

More About
. “Refactor Models”

. “Enable Component Reuse by Using Clone Detection” on page 3-32
. “Transform Model to Variant System” on page 3-26

Create a Simplified, Standalone Model Using the Model Slicer Tool

Create a Simplified, Standalone Model Using the Model
Slicer Tool

You can simplify simulation, debugging, and formal analysis of large, complex models by
focusing on areas of interest in your model. After highlighting a portion of your model
using the Model Slicer, you can generate a simplified standalone model. The simplified
model contains the blocks and dependency paths in the highlighted portion. Apply
changes to the simplified standalone model based on simulation debugging, and formal
analysis, and then apply these changes back to the original model.

1

The example model sldemo mdlref basic contains three instances of the model
sldemo _mdlref counter. To open the model, at the MATLAB command prompt,
enter:

sldemo _mdlref basic

To open the Model Slicer Manager, on the Apps tab, click Model Slicer.

In the Model Slice Manager, click the arrow to expand the Slice configuration list.
Set the slice properties:

* Name: Slicel

Color: ! (magenta)
* Signal Propagation: upstream
Model Slicer can also highlight the constructs downstream of or bidirectionally from

a block in your model, depending on which direction you want to trace the signal
propagation.

Add CounterC as a starting point. In the model, right-click CounterC and select
Model Slicer > Add as Starting Point.

1-19

1 Getting Started

Model Slice Manager: sldemo_mdiref_basic >

b Slice configuration list é?i @ ®
Name: |Slicel | .
Description:

Signal propagation: 4= |upstream -

Starting Points [clear all
= L counterc

» Simulation time window
b Refine Dead Logic

Export to Web Generate Slice

| Slicer Active

The Model Slicer now highlights the upstream constructs that affect CountercC.

1-20

Create a Simplified, Standalone Model Using the Model Slicer Tool

In the Model Slice Manager, click Generate slice.

In the Select File to Write dialog box, select the save location and enter a model
name. The simplified standalone model contains the highlighted model items.

Component-Based Modeling with Model Reference

100
L uppes

~COULL D

Ot Outd QutC
Pulse

Generator —pe | er
with Te=1.0 Q

0 i CounterC

Caopyright 1990-2014 Tha MathWorks, Inc.

8 To remove highlighting from the model, close the Model Slice Manager.

1-21

1 Getting Started

See Also

More About

. “Model Slicer Considerations and Limitations” on page 11-54
. “Highlight Functional Dependencies” on page 11-2
. “Refine Highlighted Model” on page 11-13

1-22

Verification and Validation

* “Test Model Against Requirements and Report Results” on page 2-2

* “Analyze a Model for Standards Compliance and Design Errors” on page 2-8
* “Perform Functional Testing and Analyze Test Coverage” on page 2-11

* “Analyze Code and Test Software-in-the-Loop” on page 2-14

2 Verification and Validation

Test Model Against Requirements and Report Results

Requirements - Test Traceability Overview

Traceability between requirements and test cases helps you interpret test results and see
the extent to which your requirements are verified. You can link a requirement to
elements that help verify it, such as test cases in the Test Manager, verify statements in
a Test Sequence block, or Model Verification blocks in a model. When you run tests, a
pass/fail summary appears in your requirements set.

This example demonstrates a common requirements-based testing workflow for a cruise
control model. You start with a requirements set, a model, and a test case. You add
traceability between the tests and the safety requirements. You run the test, summarize
the verification status, and report the results.

Functional
requirements

System
requirements

- lpdate requirements

|

|

| bezmmm s Traceability ----
| | |
i Traceability i
i i i
| | |

Develop Develop
Develop test
specification / = detailed = casEs L= Run tests | Report results
architecture model

f

Refine

In this example, you conduct a simple test of two requirements in the set:

» That the cruise control system transitions to disengaged from engaged when a braking
event has occurred

» That the cruise control system transitions to disengaged from engaged when the
current vehicle speed is outside the range of 20 mph to 90 mph.

2-2

Test Model Against Requirements and Report Results

Display the Requirements

1

Create a copy of the project in a working folder. The project contains data,
documents, models, and tests. Enter:

path = fullfile(matlabroot, 'toolbox', 'shared', 'examples’,...
'verification', 'src', 'cruise')

run(fullfile(path, 'slVerificationCruiseStart'))

In the project models folder, open the simulinkCruiseAddReqgExample.slx
model.

Display the requirements. Click the u= icon in the lower-right corner of the model
canvas, and select Requirements. The requirements appear below the model
canvas.

Expand the requirements information to include verification and implementation
status. Right-click a requirement and select Verification Status and
Implementation Status.

2-3

2 Verification and Validation

simulinkCruiseAddRegExample

® |simul|nkD‘u|saAddRquxample » hd
3 D
boolean CruiseOnOff
= £ CruiseOnOff
CruiseOnOff e
~, boolean EBrake S »(jaged
- efgaged
0 Brake }
single Speed Speed
— t D
T boolean FE—.CoaslsslSW CoastSetSw
CoastSetSw
o boolean |
£ AccelResSw
B2 | AccelResSw Compute target speed
» || um
¥ x

Requirements - simulinkCruiseAddRegExample

view: [reuirements_~| [[2]5][@] [BE=] [£[&] @ e

~ % simulinkCruiseChar (l-)

v E1 Architecture Architecture T

B 11 ALl Enable Disable Switch (] @400

B 12 a1z Set Speed | Decelerate Bu_. | |

B 13 AL3 Resume Speed / Accelert...)

B 15 ALS Target Speed Output T

B 16 AL Vehicle Speed Input I @400 |

B 17 ALT7 Vehicle Brake Input (] @400

B2 Functional Requirements Functional Requirements [ll l

E 3 Safety Reguirements Safety Requirements () ()
Ready 125%

5

Link Requirements to Tests

Link the requirements to the test case.

1

Property Inspector L]

Requirement: A 1.2

Details
¥ Properties

Type: Functional -
Index: 12

Custom ID: |A1.2 |

Summary: [Set Speed / Decelerate Button |

Description Rationale

Set Speed/Decelerate Button

u

The controller shall have an input button to:

set the target speed to the current vehicle speed when the cruise
control is not engaged (active)

decelerate (reduce) the target speed when the cruise control is
engaged (active)

Keywords:

P Revision information:
¥ Links

B 4= Implemented by:
TF coastsetsw

» Comments

FixedStepDiscrete

In the Project window, open the Simulink Test file sLReqTests.mldatx from the
tests folder. The test file opens in the Test Manager.

In the Project window, open the Simulink Test file sTReqTests.mldatx from the

tests folder. The test file opens in the Test Manager. Explore the test suite and

select Safet

2-4

y Tests.

Test Model Against Requirements and Report Results

Return to the model. Right-click on requirement S 3.1 and select Link from
Selected Test Case.

Alink to the Safety Tests test case is added to Verified by. The yellow bars in the
Verified column indicate that the requirements are not verified.

Requirements - simulinkCruiseAddRegExample P>
view: |Requirements v | | (% | 3| @ | | & E & || B il (o ML
" El ¢ Verified by:
v B 3 Safety Reguirements Safety Reguirements [][] E M@)

B 31 s31 Vehicle braking dise...))
E 32 53.2 System engagemen... [][] <
E 33 |s33 Target speed limita... [))
E 34+ s34 Speed outside limit...)() w

Ready 150% FixedStepDiscrete
2 Also add alink foritem S 3.4.

Run the Test

The test case uses a test harness SafetyTest Harnessl. In the test harness, a test
sequence sets the input conditions and checks the model behavior:

The BrakeTest sequence engages the cruise control, then applies the brake. It
includes the verify statement

verify(engaged == false,...

‘verify:brake', ...

'system must disengage when brake applied')
The LimitTest sequence engages the cruise control, then ramps up the vehicle speed
until it exceeds the upper limit. It includes the verify statement.

verify(engaged == false,...
‘verify:limit', ...
'system must disengage when limit exceeded')

Return to the Test Manager. To run the test case, click Run.

When the test finishes, review the results. The Test Manager shows that both
assessments pass and the plot provides the detailed results of each verify
statement.

2-5

2 Verification and Validation

Results and Arlifacts [E] safety Tests x Visualize x
|Fi|te' results by name or tags, e.g. fags: test W verify limit
~ Results: 2019-Jun-21 11:29:55 19
Fail |
+ [Safety Tests (]
+ [[&l Verify Statements (]
verify:brake (]
v verifylimit /] Passd | | |l | — | OSSN SUURRRRIN RRSUURI SR -
MName [\J verify:limit
Block Path SafetyTest_Harness1/Test ..
Interp Method zoh Untested LU
Sync Method union
Units
Sample Time
Data Type siTestResult T T T T T T T T T T T T
2 0 2 4 [H 10 12 14 16 18 20
3 Return to the model and refresh the Requirements. The green bar in the Verified
column indicates that the requirement has been successfully verified.
Requirements - simulinkCruiseAddRegExample L4 | |
view: |Requremenss ~| [[0 @ [2]E 4 al e Keywords: |
D S Ay L] » Revision information:
v E 3 Safety Reguirements Safety Reguirements -][] * Links
E 32 53.2 System engagement spe... [][] Bl 4= verified by:
E 33 533 Target speed limitations [] l] = Safety Tests o
E 34 53.4 Speed outside imits dise... ([NEEEDDDDDDD)
v
Ready 125% FixedStepDiscrete

Report the Results

1 Create a report using a custom Microsoft Word template.

a From the Test Manager results, right-click the test case name. Select Create
Report.

b In the Create Test Result Report dialog box, set the options:

See Also

Title — SafetyTest

Results for — A1l Tests

File Format — DOCX

For the other options, keep the default selections.

¢ Enter a file name and select a location for the report.

d For the Template File, select the ReportTemplate.dotx file in the
documents project folder.

e C(lick Create.
2 Review the report.

a The Test Case Requirements section specifies the associated requirements

b The Verify Result section contains details of the two assessments in the test,
and links to the simulation output.

See Also

Related Examples

. “Link to Requirements” (Simulink Test)
. “Validate Requirements Links in a Model” (Simulink Requirements)
. “Customize Requirements Traceability Report for Model” (Simulink Requirements)

2-7

2 Verification and Validation

Analyze a Model for Standards Compliance and Design
Errors

Standards and Analysis Overview

During model development, check and analyze your model to increase confidence in its
quality. Check your model against standards such as MAAB style guidelines and high-
integrity system design guidelines such as DO-178 and ISO 26262. Analyze your model
for errors, dead logic, and conditions that violate required properties. Using the analysis
results, update your model and document exceptions. Report the results using
customizable templates.

standards |
1
I
““--—._.——ﬁ ;
| I
| I
I
i
I
* Model analysis: check
Develop detailed N Add lpropfarty N standards, check for_d.eslgn Y—»| Report results
model specifications errors, check specified
properties
F Y N
Resolve errorsand | Replicate errors
confirm exceptions | Analyze dependencies

Check Model for Style Guideline Violations and Design Errors

This example shows how to use the Model Advisor to check a cruise control model for
MathWorks® Automotive Advisory Board (MAAB) style guideline violations and design
errors. Select checks and run the analysis on the model. Iteratively debug issues using
the Model Advisor and rerun checks to verify that it is in compliance. After passing your
selected checks, report results.

2-8

Analyze a Model for Standards Compliance and Design Errors

Check Model for MAAB Style Guideline Violations

In Model Advisor, you can check that your model complies with MAAB modeling
guidelines.

1 Create a copy of the project in a working folder. On the command line, enter

path = fullfile(matlabroot, 'toolbox', 'shared', 'examples’',...
'verification','src', 'cruise')
run(fullfile(path, 'slVerificationCruiseStart'))

2 Open the model. On the command line, enter

open_system simulinkCruiseErrorAndStandardsExample
3 Inthe Modeling tab, select Model Advisor.

Click OK to choose simulinkCruiseErrorAndStandardsExample from the
System Hierarchy.

5 Check your model for MAAB style guideline violations using Simulink Check.

In the left pane, in the By Product > Simulink Check > Modeling Standards
> MAAB 3.0 Checks folder, select:

* Check for indexing in blocks

* Check for prohibited blocks in discrete controllers

* Check model diagnostic parameters

Right-click on the MAAB 3.0 Checks node and select Run Selected Checks.

Click Check model diagnostic parameters to review the configuration
parameter settings that violate MAAB style guidelines.

In the right pane, click the parameter links to update the values in the
Configuration Parameters dialog box.

To verify that your model passes, rerun the check. Repeat steps ¢ and d, if
necessary, to reach compliance.

To generate a results report of the Simulink Check checks, select the MAAB 3.0
Checks node, and then, in the right pane click Generate Report....

Check Model for Design Errors

While in Model Advisor, you can also check your model for hidden design errors using
Simulink Design Verifier.

2-9

2 Verification and Validation

1 In the left pane, in the By Product > Simulink Design Verifier folder, select
Design Error Detection. All the checks in the folder are selected.
In the right pane, click Run Selected Checks.
After the analysis is complete, expand the Design Error Detection folder, then
select checks to review warnings or errors.
4 In the right pane, click Simulink Design Verifier Results Summary. The dialog
box provides tools to help you diagnose errors and warnings in your model.
a Review the results on the model. Click Highlight analysis results on model.
Click the Compute target speed subsystem, outlined in red. The Simulink
Design Verifier Results Inspector window provides derived ranges that can help
you understand the source of an error by identifying the possible signal values.
b Review the harness model. The Simulink Design Verifier Results Inspector
window displays information that an overflow error occurred. To see the test
cases that demonstrate the errors, click View test case.
¢ Review the analysis report. In the Simulink Design Verifier Results Inspector
window, click Back to summary. To see a detailed analysis report, click HTML
or PDF.
See Also

Related Examples

2-10

“Check Model Compliance by Using the Model Advisor” on page 3-2
“Collect Model Metrics Using the Model Advisor” on page 5-11
“Run a Design Error Detection Analysis” (Simulink Design Verifier)
“Prove Properties in a Model” (Simulink Design Verifier)

Perform Functional Testing and Analyze Test Coverage

Perform Functional Testing and Analyze Test Coverage

Functional testing begins with building test cases based on requirements. These tests can
cover key aspects of your design and verify that individual model components meet
requirements. Test cases include inputs, expected outputs, and acceptance criteria.

By collecting individual test cases within test suites, you can run functional tests
systematically. To check for regression, add baseline criteria to the test cases and test the
model iteratively. Coverage measurement reflects the extent to which these tests have
fully exercised the model. Coverage measurement also helps you to add tests and
requirements to meet coverage targets.

Functional reguirements

Create test inputs or Add run-time

import external test data verifications
Run tests] Collect » Report
coverage results
Add expected outputs ry

Set coverage criteria

h 4

and acceptance criteria
N

v

Analyze dependencies
Refine model

Add tests
Refine requirements

Incrementally Increase Test Coverage Using Test Case
Generation

This example shows a functional testing-based testing workflow for a cruise control
model. You start with a model that has tests linked to an external requirements document,
analyze the model for coverage in Simulink Coverage, incrementally increase coverage
with Simulink Design Verifier, and report the results.

2-11

2 Verification and Validation

2-12

Explore the Test Harness and the Model

1

Create a copy of the project in a working folder. At the command line, enter:

path = fullfile(matlabroot, 'toolbox', 'shared', 'examples’',...
‘verification', 'src', 'cruise')

run(fullfile(path, 'slVerificationCruiseStart'))

Open the model and the test harness. At the command line, enter:

open_system simulinkCruiseAddReqExample
sltest.harness.open('simulinkCruiseAddReqExample', 'SafetyTest Harnessl')
Load the test suite from “Test Model Against Requirements and Report Results”
(Simulink Test) and open the Simulink Test Manager. At the command line, enter:

sltest.testmanager.load('slReqTests.mldatx")

sltest.testmanager.view

Open the test sequence block. The sequence tests that the system disengages when
the:

* Brake pedal is pressed
* Speed exceeds a limit

Some test sequence steps are linked to requirements document
simulinkCruiseChartReqs.docx.

Measure Model Coverage

In the Simulink Test Manager, click the sLReqTests test file.
To enable coverage collection for the test case, in the right page under Coverage
Settings:

* Select Record coverage for referenced models

* Use Coverage filter filename to specify a coverage filter to use for the coverage
analysis. The default setting honors the model configuration parameter settings.
Leaving the field empty attaches no coverage filter.

* Select Decision, Condition, and MCDC.

To run the tests, on the Test Manager toolstrip, click Run.

When the test finishes navigate to the test case results in the Test Manager. The
aggregated coverage results show that the example model achieves 50% decision
coverage, 41% condition coverage, and 25% MCDC coverage.

See Also

> AGGREGATED COVERAGE RESULTS

ANALYZED MODEL REFORT CO.. DECISION CONDITION MCDC +

[Pa] simulinkCruisesddReqExarmple A 3 S0% - 41% = 25% mm

1-6
Add Tests for Missing Coverage Export

Generate Tests to Increase Model Coverage

1 Use Simulink Design Verifier to generate additional tests to increase model coverage.
In Results and Artifacts, select the sTReqTests test file and open the Aggregated
Coverage Results section located in the right pane.

2 Right-click the test results and select Add Tests for Missing Coverage.

3 Under Harness, choose Create a new harness.

4 Click OK to add tests to the test suite using Simulink Design Verifier. The model
being tested must either be on the MATLAB path or in the working folder.

5 On the Test Manager toolstrip, click Run to execute the updated test suite. The test
results include coverage for the combined test case inputs, achieving increased
model coverage.

See Also

Related Examples

. “Link to Requirements” (Simulink Test)

. “Assess Model Simulation Using verify Statements” (Simulink Test)

. “Compare Model Output To Baseline Data” (Simulink Test)

. “Generate Test Cases for Model Decision Coverage” (Simulink Design Verifier)
. “Increase Test Coverage for a Model” (Simulink Test)

2-13

2 Verification and Validation

Analyze Code and Test Software-in-the-Loop

Code Analysis and Testing Software-in-the-Loop Overview

Analyze code to detect errors, check standards compliance, and evaluate key metrics
such as length and cyclomatic complexity. Typically for handwritten code, you check for
run-time errors with static code analysis and run test cases that evaluate the code against
requirements and evaluate code coverage. Based on the results, refine the code and add
tests. For generated code, demonstrate that code execution produces equivalent results
to the model by using the same test cases and baseline results. Compare the code
coverage to the model coverage. Based on test results, add tests and modify the model to
regenerate code.

Detailed model /

- s Add tests /
Requirements f------- Traceability------—- -
4 ty Refine model

T

— :

Traceability i

N 1

l :
Develop or Code analysis Verify results / Analyze Report

P »| Error detection » Run tests » / » v > P

generate code equivalence coverage results

Code metrics

h

2-14

A J

Analyze Code for Defects, Metrics, and MISRA C:2012

This workflow describes how to check if your model produces MISRA® C:2012 compliant
code and how to check your generated code for code metrics, code defects, and MISRA
compliance. To produce more MISRA compliant code from your model, you use the code
generation and Model Advisor. To check whether the code is MISRA compliant, you use
the Polyspace MISRA C:2012 checker and report generation capabilities. For this
example, you use the model simulinkCruiseErrorAndStandardsExample. To open
the model:

1 Open the project.

Analyze Code and Test Software-in-the-Loop

path = fullfile(matlabroot, 'toolbox', 'shared', 'examples’,...
'verification', 'src', 'cruise')
run(fullfile(path, 'slVerificationCruiseStart'))

2 From the project, open the model simulinkCruiseErrorAndStandardsExample.

4)

(1) : P CruiseOnOff
: —£ CruiseOnOff
CruiseOnOff
engaged P..‘I
(2) P Brake —E engaged
—£ Brake engaged
Brake \‘
3 P Speed
Q —£ Speed peg
Speed
(4) P CoastSetSw
—£ CoastSetSw 2
CoastSetSw S —E tspeed
tspeed
5 P Accel '
D -£ AccelResSw \ Rossw _))
AccelResSw - .
Compute target speed

Run Code Generator Checks

Before you generate code from your model, there are steps that you can take to generate
code more compliant with MISRA C and more compatible with Polyspace. This example
shows how to use the Code Generation Advisor to check your model before generating
code.

1 Right-click Compute target speed and select C/C++ Code > Code Generation
Advisor.

2 Select the Code Generation Advisor folder. In the right pane, move Polyspace to
Selected objectives - prioritized . The MISRA C:2012 guidelines objective is
already selected.

2-15

2 Verification and Validation

Code Generation Objectives (System target file: ert.tic)

2-16

Available objectives Selected objectives - prioritized

Execution efficiency MISRA C:2012 guidelines
ROM efficiency Polyspace

RAM efficiency
Traceability
Safety precaution
Debugging

+

5

Click Run Selected Checks.

The Code Generation Advisor checks whether there are any blocks or configuration
settings that are not recommended for MISRA C:2012 compliance and Polyspace
code analysis. For this model, the check for incompatible blocks passes, but there are
some configuration settings that are incompatible with MISRA compliance and
Polyspace checking.

[C& Code Generation Advisor
& Check model configuration settings against code generation objectives
0 Check for blocks not recommended for MISRA C:2012

Click on check that did not pass. Accept the parameter changes by selecting Modify
Parameters.

Rerun the check by selecting Run This Check.

Run Model Advisor Checks

Before you generate code from your model, there are steps you can take to generate code
that is more compliant with MISRA C and more compatible with Polyspace. This example
shows you how to use the Model Advisor to check your model before generating code.

1

At the bottom of the Code Generation Advisor window, select Model Advisor.

I+

+

Analyze Code and Test Software-in-the-Loop

Under the By Task folder, select the Modeling Standards for MISRA C:2012
advisor checks.

Click Run Selected Checks and review the results.

If any of the tasks fail, make the suggested modifications and rerun the checks until
the MISRA modeling guidelines pass.

Generate and Analyze Code

After you have done the model compliance checking, you can generate the code. With
Polyspace, you can check your code for compliance with MISRA C:2012 and generate
reports to demonstrate compliance with MISRA C:2012.

1

In the Simulink editor, right-click Compute target speed and select C/C++ Code >
Build This Subsystem.

Use the default settings for the tunable parameters and select Build.

After the code is generated, right-click Compute target speed and select Polyspace >
Options.

Click the Configure (Polyspace Bug Finder) button. This option allows you to choose
more advanced Polyspace analysis options in the Polyspace configuration window.

2-17

2 Verification and Validation

W Palyspace — O *
I File Edit Tools Window Help
|
CIE ~]Q |
simulinkCruis...Example_config x | 4 B
- Target & Compiler Coding Standards & Code Metrics
- Macros
- Envirenment Settings
----- Inputs & Stubbing
lllll Multitasking [set checkers by file 3
& Coding Standards & Code Metrics Coding Standards
----- Bug Finder Analysis
- Code Prover Verification [] Check MISRA C:2004 reguired-rules View
Verification Assumptions [[] Check MISRA AC AGC OBL-rules View
Check Behavior -
- Precision Check MISRA C:2012 mandatory-required w | View
‘- Sealing [[] Use generated code requirements
----- Reporting i —
_____ Run Settings Effective boolean types | Type |:I‘]:| * ¥ .
----- Advanced Settings boolean_T
[] Chedk SEI CERT-C all View
[chedk 1so/1EC TS 17961 |all View
[Chedk custom rules Edit
Code Metrics
Calculate Code Metrics

5 On the same pane, select Calculate Code Metrics. This option turns on code metric
calculations for your generated code.

Save and close the Polyspace configuration window.

From your model, right-click Compute target speed and select Polyspace > Verify >
Code Generated For Selected Subsystem.

Polyspace Bug Finder analyzes the generated code for a subset of MISRA checks and
defect checks. You can see the progress of the analysis in the MATLAB Command
Window. Once the analysis is finished, the Polyspace environment opens.

2-18

Analyze Code and Test Software-in-the-Loop

Review Results

After you run a Polyspace analysis of your generated code, the Polyspace environment
shows you the results of the static code analysis.

1 Expand the tree for rule 8.7 and click through the different results.

Rule 8.7 states that functions and objects should not be global if the function or
object is local. As you click through the 8.7 violations, you can see that these results
refer to variables that other components also use, such as CruiseOn0ff. You can
annotate your code or your model to justify every result. But, because this model is a
unit in a larger program, you can also change the configuration of the analysis to
check only a subset of MISRA rules.

¥ Polyspace Bug Finder - Compute \\thome-00-ah\mhaines\Doc

File Reporting Metrics Tools Window Help

ts\MATLAB project:

ults_Compute\Compute

—r Gobil Scope e Scope ||

Variable trace

B * Category: Advisory Computa c Global Scope File Scope

: = * (Category: Advisory Compute.c Global Scope File Scope v
<
ﬁ] Project Browser Results List
I Result Detaiks

Compute.c|

=l Result Review

Severity : P

Status ~

Enter comment here...

~ MISRA C:2012 8.7 (Advisory) (2

Variable ‘Compute_M' should have internal linkage.

Functions and objects should not be defined with external linkage if they are referenced in only one translation unit.

/* Real-time model */

5
RT_MODEL_Compute_T Compute M :
] - _ =

BT_MCDEL _Compute T *const Compute M = sCompute]

/* Exported data definition */

/% Definition for custom storage class: Global
boolean_T AccelResSws:

boolean T Brake:

boolean T GoastSetsws

boolean T CruiseOnOfE:

uinte T Speed:

boolean T engaged;

uints T tspesd;

/* Definition for custom storage class: Global
7

T holdrate = 5U:

7

_T incdec = 1U:

uinté

uints

- 7

uints T maxtspsed = 50U;
v

<

& 5 & 5> run @ stop | &
S Results L _
All results v | TeNew [Fv <> @ Showing 118/118 v | [Compute.c x 4B
Family = Information o File o Chss = Function = Severity IZ:E;DE Cnmpur.a_IN_cRUISE ((uint;_IJ 1) ~
[5-MISRA C:2012 49 @ #define Compute IN Coast ((uintg_T)20)
2 Unused code 32 $define Compute IN NO ACTIVE CHILD ((uinte T)OU)
4 Code design 3 $#define Ccmpu\:ailﬂiok'l; B (tuincaiTJ 20
[=-8 Dedlarations and definitions 14 - - -
=-8.7 Functions and objects should not be defined with external inkage if they are referenced in only one transiation unit. 14 #define Compuce IN_ON ((uinzg_T)10)
L T Category: Advisory Compute.c Global Scope File Scope #define Compute IN_STANDBY (({uintg_T)20)
Loe Category: Advisory Compute.c Global Scope File Scope #define Compute IN_Steady ({uintg T)30)
1% * Category: Advisory Compute.c Global Scope File Scope
; = * Category: Advisory Compute.c Global Scope File Scope /* Block states (auto storage) */
Category: Advisory Compute.c Global Scope File Scope W _Compute T Enmpme DH;

M_;

=

=/

[afed 1ie3s [A]|

[¥ Configuration l [¥] Resuft Demlsl

{2 Dashboard { [¥] Source I [Z] output Summery|

2 In your model, right-click Compute target speed and select Polyspace > Options.

2-19

2 Verification and Validation

3 Set the Settings from (Polyspace Bug Finder) option to Project configuration.
This option allows you to choose a subset of MISRA rules in the Polyspace
configuration.

Click the Configure button.

5 In the Polyspace Configuration window, on the Coding Standards & Code Metrics
pane, select the check box Check MISRA C:2012 and from the drop-down list,
select single-unit-rules. Now, Polyspace checks only the MISRA C:2012 rules
that are applicable to a single unit.

Save and close the Polyspace configuration window.
Rerun the analysis with the new configuration.

The rules Polyspace showed previously were found because the model was analyzed
by itself. When you limited the rules Polyspace checked to the single-unit subset, only
two violations were found.

Computed version 1.0 (24/06/2019) - Author: tbedore
Analysis information: Configuration

Review Scope: All results - View all results in this scope

Code covered by analysis

100% (2/2)

Functions 100% (4/4)

No defects found

MISRA (:2012 violations by file
Total: 2 viclation(s) found

2-20

See Also

When this model is integrated with its parent model, you can add the rest of the MISRA
C:2012 rules.

Generate Report

To demonstrate compliance with MISRA C:2012 and report on your generated code
metrics, you must export your results. This section shows you how to generate a report
after the analysis. If you want to generate a report every time you run an analysis, see
Generate report.

If they are not open already, open your results in the Polyspace environment.
From the toolbar, select Reporting > Run Report.

Select BugFinderSummary as your report type.
Click Run Report.

A W N R

The report is saved in the same folder as your results.
5 To open the report, select Reporting > Open Report.

See Also

Related Examples

. “Run Polyspace Analysis on Code Generated with Embedded Coder” (Polyspace Bug
Finder)

. “Test Two Simulations for Equivalence” (Simulink Test)
. “Export Test Results and Generate Test Results Reports” (Simulink Test)

2-21

Checking Systems Interactively

3 Checking Systems Interactively

Check Model Compliance by Using the Model Advisor

3-2

Model Advisor Overview

The Model Advisor checks your model or subsystem for modeling conditions and
configuration settings that cause inaccurate or inefficient simulation of the system that
the model represents. The Model Advisor checks can help you verify compliance with
industry standards and guidelines. By using the Model Advisor, you can implement
consistent modeling guidelines across projects and development teams.

Upon completing the analysis of your model, the Model Advisor produces a report that
lists the suboptimal conditions, settings, and modeling techniques and proposes solutions,
when applicable.

You can use the Model Advisor to check your model in these ways:

» Interactively run Model Advisor checks

* Configure the Model Advisor to automatically run edit-time checks (requires Simulink
Check)

These limitations apply when you use the Model Advisor to check your model. For
limitations that apply to specific checks, see the Capabilities and Limitations section in
the check documentation.

+ Ifyou rename a system, you must restart the Model Advisor to check that system.

* In systems that contain a variant subsystem, the Model Advisor checks only the active
subsystem.

* Model Advisor does not analyze commented blocks.

* Checks do not search in model blocks or subsystem blocks with the block parameter
Read/Write set to NoReadorWrite. However, on a check-by-check basis, Model
Advisor checks do search in library blocks and masked subsystems.

» Unless specified otherwise in the documentation for a check, the Model Advisor does
not analyze the contents of a Model block. To run checks on referenced models, use
instances of the Advisor.Application class (Simulink Check license required).

Note Software is inherently complex and may not be free of errors. Model Advisor
checks might contain bugs. MathWorks reports known bugs brought to its attention on its
Bug Report system at https://www.mathworks.com/support/bugreports/. The bug reports

https://www.mathworks.com/support/bugreports/

Check Model Compliance by Using the Model Advisor

are an integral part of the documentation for each release. Examine bug reports for a
release as such reports may identify inconsistencies between the actual behavior of a
release you are using and the behavior described in this documentation.

While applying Model Advisor checks to your model increases the likelihood that your
model does not violate certain modeling standards or guidelines, their application cannot
guarantee that the system being developed will be safe or error-free. It is ultimately your
responsibility to verify, using multiple methods, that the system being developed provides
its intended functionality and does not include unintended functionality.

Model Advisor Checks Documentation

The Model Advisor only displays the checks for your installed products. This table
provides links to the product-specific check documentation. A product license may be
required to review some of the documentation.

Product Model Advisor Check Documentation

Simulink “Simulink Checks” (Simulink)

Embedded Coder “Embedded Coder Checks” (Embedded
Coder)

AUTOSAR Blockset “MathWorks AUTOSAR Blockset Checks”
(AUTOSAR Blockset)

Simulink Coder™ “Simulink Coder Checks” (Simulink Coder)

HDL Coder™ “Model Checks in HDL Coder” (HDL Coder)

Simulink Code Inspector™ “Simulink Code Inspector Checks”
(Simulink Code Inspector)

3-3

3 Checking Systems Interactively

Product

Model Advisor Check Documentation

Simulink Check

“DO-178C/D0O-331 Checks”

“IEC 61508, IEC 62304, ISO 26262, and EN
50128 Checks”

“High Integrity System Modeling Checks”

“MathWorks Automotive Advisory Board
Checks”

“Japan MATLAB Automotive Advisory Board
Checks”

“MISRA C:2012 Checks”

“Secure Coding Checks for CERT C, CWE,
and ISO/IEC TS 17961 Standards”

“Model Metrics”

“Clone Detection Checks”

Simulink Design Verifier

“Simulink Design Verifier Checks”
(Simulink Design Verifier)

Simulink Requirements

“Requirements Consistency Checks”
(Simulink Requirements)

Simscape™

Documentation is available only in the
Model Advisor. To review the
documentation for the check, in the Model
Advisor, right-click on the check title and
select What's This?

™

Simulink Control Design

“Simulink Control Design Checks”
(Simulink Control Design)

IEC Certification Kit

“IEC Certification Kit Checks for Bug
Reports” (IEC Certification Kit)

“High Integrity System Modeling Checks”

3-4

Check Model Compliance by Using the Model Advisor

Product Model Advisor Check Documentation

DO Qualification Kit “DO Qualification Kit Checks for Bug
Reports” (DO Qualification Kit)

“High Integrity System Modeling Checks”

Run Model Advisor Checks and Review Results

You can use the Model Advisor to check your model interactively against modeling
standards and guidelines. The following example uses the sldemo _mdladv model to
demonstrate the execution of the Model Advisor checks using the Model Advisor.

1 Open the Model Advisor example model sldemo mdladuv.

2 To open the Model Advisor, in the Simulink editor, click the Modeling tab and select
Model Advisor. A System Selector — Model Advisor dialog box opens. Select the
model or system that you want to review and click OK.

3 In the left pane of the Model Advisor, select the checks you want to run on your
model:

a You can select the checks by using the By Product or By Task folders. If these
folders are not displayed in the Model Advisor window, open Settings >
Preferences and select:

* Show By Product Folder — Displays checks available for each product
* Show By Task Folder — Displays checks related to specific tasks

b You can search for and execute a specific check by enter the Title or TitleID of
the check in the Find: field and click the Find Next button. The Model Advisor
searches in check names, folder names, and analysis descriptions. You can use
the Source tab to identify the Title, TitleID, and location of the MATLAB® source
code for each check. To display the Source in the right pane of the Model
Advisor, open Settings > Preferences and select Show Source Tab.

4 Click on the folder that contains the checks and, on the right pane of the Model
Advisor, select:

* Show report after run to automatically generate and display the report in HTML
format

* Run Selected Checks to execute the analysis.

To run a single check, right-click the check in the folder and select Run This Check.

3-5

matlab:sldemo_mdladv

3 Checking Systems Interactively

3-6

5 View the results on the Model Advisor User Interface. Common check status results
include
* Pass — Check did not identify issues.

* D-Pass — Dependent on configuration parameter or successful execution of
another check.

¢ Warn — Check has identified issues.
* Fail — Check fails to execute.

6 Fix the warnings or failures as desired. For more information, see “Address Model
Check Results” (Simulink).

Note Prior to applying a fix, you can save a restore point, which is a snapshot in time
of the model, base workspace, and Model Advisor. By saving a restore point, you can
revert changes that you made in response to recommendations from the Model
Advisor.

7 Use the Exclusions tab to review checks that were marked for exclusion from the
analysis. To display the Exclusions tab in the right pane of the Model Advisor, open
Settings > Preferences and select Show Exclusion tab.

8 View and save the report. For additional information, see “Save and View Model
Advisor Check Reports” (Simulink).

Note If you did not select Show report after run when you executed the checks,
you can generate a report of the results after the analysis is complete. See “Generate
Model Advisor Reports” on page 3-105.

9 If desired, you can reset the status of the checks to the Not Run state. In the left
pane, right-click on Model Advisor and select Reset. This action does not delete the
results of the analysis from the Model Advisor.

Save Analysis Time by Running the Checks from a Previous Analysis
You can save time by consistently running the same set of checks on your model by using
the Model Advisor dashboard. When you use the dashboard, the Model Advisor does not

reload the checks before executing them, saving analysis time.

1 Open the Model Advisor example model sldemo mdladv.

matlab:sldemo_mdladv

Check Model Compliance by Using the Model Advisor

Select Model Advisor > Model Advisor Dashboard. A System Selector — Model
Advisor dialog box opens. Select the model or system that you want to review and
click OK.

The Model Advisor Dashboard window opens. From this dashboard, you can:

* Click the Run checks button to execute the same checks from the previous
analysis

* Click the Switch to standard view button to open the Model Advisor and select
different checks

* Click the Enable Highlighting button to view the highlighted results in the
Simulink editor

Click the Run checks button to run the same checks on the model that were used in
the previous analysis. If desired, click the Enable Highlighting button.

The Model Advisor execute the checks and updates the dashboard to reflect the
results of the analysis, including the number of:

* Passed checks

+ Failed checks

* Flagged checks

» Total checks

If you clicked the Enable Highlighting button, the flagged results are highlighted in
the model.

The Model Advisor Highlighting information window opens with a link to the Model
Advisor window. In the Model Advisor window, you can find more information about
the check results and how to fix the warning condition.

3 Checking Systems Interactively

3-8

(4] Model Advisor Highlighting - sldeme_mdlady ==
74 - W

£2 Tdentify unconnected lines, input ports, and output ports Cpen Resuls

6 Click the Open Report button to open the entire report in HTML format.
Alternatively, you can select the number link beside the results to filter the report
results.

Check Your Model by Using Edit Time Checks

You can identify modeling issues earlier in the model design process by using edit-time
checking.

To enable edit-time checking, in the Simulink editor, click the Debug tab and select these
Diagnostics options:

+ Edit-Time Errors & Warnings — Automatically highlights check violations in the
model. The Simulink editor highlights objects that violate the edit-time checks in red
(for errors) or orange (for warnings). When you point to an object that is highlighted
and click the error or warning badge, a tooltip displays details and possible fixes.

+ Edit-Time checks — When using edit-time checking, the Model Advisor evaluates the
model against a subset of Model Advisor checks. Highlighted blocks in the model
editor window alert you to issues in your model. You can also enable this option by
clicking the Modeling tab and selecting Model Advisor > Edit-Time Checks.

To enable edit-time checking of modeling issues that are specific for code generation,
open the C Code app (available with Embedded Coder or Simulink Coder) and select the
C/C++ Code Advisor > Edit-Time Checks box.

Use Model Advisor Edit Time Checking to Highlight Issues

When using edit-time checking, the Model Advisor highlights blocks that violate the
Model Advisor checks.

Use one of these methods to enable edit-time checking of your model:

* In the Debug tab, select Diagnostics > Edit-Time Checks

Check Model Compliance by Using the Model Advisor

* In the Modeling tab, select Model Advisor > Edit-Time Checks

The Model Advisor highlights blocks in your model that violate Model Advisor checks.
Point to a highlighted block and click the error or warning icon.

van der Pol Equation

+

2 B8] x1
ol P @
Mu

Y

Copyright 2004-2013 The MathWoaorks, Inc.

The Model Advisor identifies compliance issues in the block that violate edit-time checks.
When a block has multiple check violations, you can move between the edit-time
violations by using the << and >> buttons. For each issue, you can:

* Review the cause.

* Click the question mark to access detailed documentation about the flagged Model
Advisor check.

* Ignore the warning and add the block to the exclusion list for that check by clicking
Ignore.

3-9

3 Checking Systems Interactively

3-10

Model Advisor Warning >
lgnore

=2
L
P
W

Block name wioclation
Caused by:
Block nams has incorrect characters

In this example, you use edit-time checking to verify the compliance of a Stateflow chart
with the MAAB guidelines while you edit.

1

Open a model that contains Stateflow charts. For example, at the command prompt,
type: open sf boiler.

To enable the edit-time checking, in the Modeling tab, select Model Advisor >
Edit-Time Checks .

Open the Bang-Bang Controller chart by double-clicking it. The Model Advisor
highlights multiple states. Place your cursor over the warning of the Off state to
discover the issue.

Check Model Compliance by Using the Model Advisor

Heater ?

Off
entry: turn_boiler(OFF)

Flash) = =
fter(5,
{en: flash LEDQ [2N 88

)]

|
after(20,sec) after(40,sec) |

[cold(]] /
o [Heater.On.warm()]

On

4 Select the warning. The Model Advisor indicates that there must be a new line after
entry: to comply with the MAAB guidelines. In your model, place your cursor after
en: and press Enter. A new line is added and the warning is cleared.

View and Configure the Model Advisor Edit-Time Checks

When you run the Model Advisor edit-time checks, the Model Advisor evaluates the model
against a subset of Model Advisor checks. To view and configure the Model Advisor
checks that edit-time checking flags:

1 In the Simulink editor, click the Modeling tab and select Model Advisor >
Customize Edit-Time Checks.

2 In the Model Advisor Configuration Editor, verify that the Edit-time Supported
Checks item is selected from the Show drop-down list. The filtered list identifies the
model advisor checks that are flagged.

3-11

3 Checking Systems Interactively

(£ Model Advisor Configuration Editor - Untitled

File Edit View Help

Current Configuration: Untitled

v % Model Advisor Configuration Editor
~ W] 5 By Task
v E‘ I3 Simulink Code Inspector compatibility checks
(=] Check for unsupported blocks
~ [W] E3 Modeling Standards for MAAB
v |E| lﬁl Naming Conventions
D Check subsystem names
=] Check port block names
(=] Check character usage in block names
~ [®] 3 simulink
E=] Check display for port blacks
(=] Check whether block names appear below blocks
(=] check for prohibited blocks in discrete controllers
(=] Check for prohibited sink blocks
(=] Check orientation of Subsystem blocks
(=] Check for use of standard library blocks
v W] D) stateflow
(=] Check transition orientations in flow charts
=] check entry formatting in State blocks in Stateflow charts
(=] Check for MATLAB expressions in Stateflow charts
(=] Check transition actions in Stateflow charts
v [W] (3 Modeling Standards for IMAAS
N |E| £ Stateflow
E=] Check placement of Label String in Transitions
v (W] 23 Modeling Standards for MISRA C:2012

[=] Check for blocks not recommended for C/C++ production code deployment

=" g Fmd:{):l 5 Show: |Edit-Time Supported Checks ¥

Model Advisor Configuration Editor
Check subsystem names [Edit-time Supported Check]

Display Name: Check subsystem names

Check Instance ID: _SYSTEM_By Task_MAAB Naming Conventions_mathworks.maab.jc_0201

Check Title: Check subsystem names
Check ID: mathworks.maab.jc_0201
Description: jc_0201: Subsystem block names include incorrect characters
:;‘;‘;;'i‘;tim Simulink; Simulink Check

Input Parameters

Naming standard: | MAAB 3.0 &~
Regular expression for prohibited names: | ([~a-zA-Z_0-97)|(“\d)I(™ J(_ (" (%)
Follow links |on | Look under masks | graphical -

Help Apply

3 Select or clear checks. Selected checks are included in the edit-time check analysis.
You can use the Input Parameters options to customize each check.

4 If you have made updates to check selection or behavior, save the current
configuration. Then select File > Set Current Configuration as Default.

Note Only the default configuration can change the behavior of edit-time checks.

To customize the behavior of edit-time checks, configure updates in the filtered view of
edit-time checks in the Model Advisor Configuration Editor. If a check appears in multiple
folders of your Model Advisor tree, for edit-time checking, Model Advisor prioritizes the
check in your custom folder. If the check is not in your custom folder, priority goes to the
check in the By Task folder, and finally to the check in your By Product folder.

3-12

See Also

See Also

Related Examples

“Run Model Advisor Checks and Review Results” on page 3-5
“Address Model Check Results” (Simulink)

“Generate Model Advisor Reports” on page 3-105

“Save and View Model Advisor Check Reports” (Simulink)
“Find Model Advisor Check IDs” (Simulink)

“Archive and View Results” on page 4-7

More About

“Check Your Model Using the Model Advisor” (Simulink)
“Exclude Blocks From the Model Advisor Check Analysis” on page 3-14

3-13

3 Checking Systems Interactively

Exclude Blocks From the Model Advisor Check Analysis

3-14

Model Advisor Exclusion Overview

To save time during model development and verification, you can limit the scope of a
Model Advisor analysis of your model. You can create a Model Advisor exclusion to
exclude blocks in the model from selected checks. You can exclude all or selected checks
from:

* Simulink blocks

+ Stateflow® charts

After you specify the blocks to exclude, Model Advisor uses the exclusion information to
exclude blocks from specified checks during analysis. By default, Model Advisor exclusion

information is stored in the model SLX file. Alternately, you can store the information in
an exclusion file.

To view exclusion information for the model, right-click in the model window or right-click
a block and select Model Advisor > Open Model Advisor Exclusion Editor.

The Model Advisor Exclusion Editor dialog box includes the following information for
each exclusion.

(2 Maodel Advisor Exclusion Editar @
File

V| Store exclusions in model file

Exclusions

Model: sldemo_mdlady

Rationale | Type Yalue | Check ID(s)

Remove Exclusion| Rerun Model Advisor checks to update results and highlighting

oK H Cancel H Help Apply

Exclude Blocks From the Model Advisor Check Analysis

Field Description

Rationale A description of why this object is excluded from Model
Advisor checks. The rationale field is the only field that you
can edit.

Type Whether a specific block is excluded or all blocks of a given
type are excluded.

Value Name of excluded block or blocks.

Check ID (s) Names of checks for which the block exclusion applies.

Note If you comment out blocks, they are excluded from both simulation and Model
Advisor analysis.

Save Model Advisor Exclusions in a Model File

To save Model Advisor exclusions to the model . s1x file, in the Model Advisor Exclusion
Editor dialog box, select Store exclusions in model file. When you open the
model . slx file, the model contains the exclusions.

Save Model Advisor Exclusions in Exclusion File

A Model Advisor exclusion file specifies the collection of blocks to exclude from specified
checks in an exclusion file. You can create exclusions and save them in an exclusion file.
To use an exclusion file, in the Model Advisor Exclusion Editor dialog box, clear Store
exclusions in model file. The Exclusion File field is enabled.

The Exclusion File contains the exclusion file name and location associated with the
model. You can use an exclusion file with several models. However, a model can have only
one exclusion file.

Unless you specify a different folder, the Model Advisor saves exclusion files in the
current folder. The default name for an exclusion file is
<model name> exclusions.xml.

If you create an exclusion file and save your model, you attach the exclusion file to your

model. Each time that you open the model, the blocks and checks specified in the
exclusion file are excluded from the analysis.

3-15

3 Checking Systems Interactively

3-16

Create Model Advisor Exclusions

1

2

In the model window, right-click a block and select Model Advisor. Select the menu
option for the type of exclusion that you want to do.

To

Select Model Advisor >

Exclude the block from
all checks.

Exclude block only > All Checks

Exclude all blocks of this
type from all checks.

Exclude all blocks with type <block_type> > All

Checks

Exclude the block from
selected checks.

* Exclude block only > Select Checks.

* In the Check Selector dialog box, select the
checks. Click OK.

Exclude all blocks of this
type from selected
checks.

* Exclude all blocks with type <block _type> >
Select Checks.

* In the Check Selector dialog box, select the
checks. Click OK.

Exclude the block from
all failed checks. After a
Model Advisor analysis,
this option is available.

Exclude block only > Only failed checks

Exclude all blocks of this
type from all failed
checks. After a Model
Advisor analysis, this
option is available.

Exclude all blocks with type <block_type> >
Only failed checks

Exclude the block from a
failed check. After a
Model Advisor analysis,
this option is available.

Exclude block only > <name of failed check>

Exclude all blocks of this
type from a failed check.
After a Model Advisor
analysis, this option is
available.

Exclude all blocks with type <block_type> >
<name of failed check>

In the Model Advisor Exclusion Editor dialog box, to:

Exclude Blocks From the Model Advisor Check Analysis

» Store exclusions in model file, select Store exclusions in model file. Click OK or
Apply to create the exclusion.

* Save the information to an exclusion file, clear Store exclusions in model file.
Click OK or Apply. If this exclusion is the first one, a Save Exclusion File as dialog
box opens. In this dialog box, click Save to create a exclusion file with the default
name <model name>_exclusions.xml in the current folder. Optionally, you can
select a different file name or location.

3 Optionally, if you want to change the exclusion file name or location:
a In the Model Advisor Exclusion Editor dialog box, clear Store exclusions in
model file.
b In the Model Advisor Exclusion Editor dialog box, select Change.
¢ In the Change Exclusion File dialog box, select Save as.

d In the Save Exclusion File dialog box, navigate to the location that you want and
enter a file name. Click Save.

e In the Model Advisor Exclusion Editor dialog box, select OK or Apply to create
the exclusion and save the information to an exclusion file.

You can create as many Model Advisor exclusions as you want by right-clicking model
blocks and selecting Model Advisor. Each time that you create an exclusion, the Model
Advisor Exclusion Editor dialog box opens. In the Rationale field, you can specify a
reason for excluding blocks or checks from the Model Advisor analysis. The rationale is
useful to others who review your model.

If you create an exclusion file and save your model, you attach the exclusion file to your
model. Each time that you open the model, the blocks and checks specified in the
exclusion file are excluded from the analysis.

Review Model Advisor Exclusions

You can review the exclusions associated with your model. Before or after a Model
Advisor analysis, to view exclusions information:

* Right-click in the model window or right-click a block and select Model Advisor >
Open Model Advisor Exclusion Editor. The Model Advisor Exclusion Editor dialog
box lists the exclusions for your model.

* In the Modeling tab, open Model Advisor > Preferences. In the Model Advisor
Preferences dialog box, select Show Exclusion tab. In the right pane of the Model

3-17

3 Checking Systems Interactively

3-18

Advisor window, select the Exclusions tab to display checks that are excluded from
the Model Advisor analysis.

* In the Modeling tab, select Model Advisor to open the Model Advisor.

1 On the Model Advisor window toolbar, select Highlighting > Highlight
Exclusions. By default, this menu option is selected.

In the Model Advisor window, click Enable highlighting (E}).

After the Model Advisor analysis, you can view exclusion information for individual checks
in the:

* HTML report. Before the analysis, in the Model Advisor window, make sure that you
select the Show report after run check box.

* After you run the checks, in the left pane of the Model Advisor window, the checks that
contain exclusion rules are highlighted in orange. The Model Advisor results include
additional information about the exclusion.

If the check The HTML report and Model Advisor window
Has no exclusions rules |Show that no exclusions were applied to this check.
applied.

Does not support Shows that the check does not support exclusions.
exclusions.

Is excluded from a Lists the check exclusion rules.

block.

Manage Exclusions

Save Exclusions in a File

1 In the Model Advisor Exclusion Editor dialog box, clear Store exclusions in model
file and click OK or Apply. If this exclusion is the first one, a Save Exclusion File as
dialog box opens. In this dialog box, click Save to create an exclusion file with the
default name <model name>_exclusions.xml in the current folder. Optionally, you
can select a different file name or location.

2 Ifyou want to change the exclusion file name or location:

a In the Model Advisor Exclusion Editor dialog box, select Change.

Exclude Blocks From the Model Advisor Check Analysis

b In the Change Exclusion File dialog box, select Save as.

In the Save Exclusion File dialog box, navigate to the location that you want and
enter a file name. Click Save.

d In the Model Advisor Exclusion Editor dialog box, select OK or Apply to create
the exclusion and save the information in an exclusion file.

Load an Exclusion File

To load an existing exclusion file for use with your model:

1 In the Model Advisor Exclusion Editor dialog box, clear Store exclusions in model
file. Click Change.
In the Change Exclusion File dialog box, click Load.
Navigate to the exclusion file that you want to use with your model. Select Open.
In the Model Advisor Exclusion Editor dialog box, click OK to associate the exclusion
file with your model.

Detach an Exclusion File

To detach an exclusion file associated with your model:

1 In the Model Advisor Exclusion Editor dialog box, clear Store exclusions in model
file. Click Change.
In the Change Exclusion File dialog box, click Detach.
In the Model Advisor Exclusion Editor dialog box, click OK.

Remove an Exclusion

1 In the Model Advisor Exclusion Editor dialog box, select the exclusions that you want
to remove.

2 Click Remove Exclusion.
Add a Rationale to an Exclusion

You can add text that describes why you excluded a particular block or blocks from
selected checks during Model Advisor analysis. A description is useful to others who
review your model.

1 In the Model Advisor Exclusion Editor dialog box, double-click the Rationale field for
the exclusion.

3-19

3 Checking Systems Interactively

3-20

2 Delete the existing text.
3 Add the rationale for excluding this object.

Programmatically Specify an Exclusion File

You can use the MAModelExclusionFile method to programmatically specify the name
of an exclusion file.

1 Use get param to obtain the model object. For example, for sldemo mdladv:

mo = get param('sldemo mdladv', 'Object')

2 Use MAModelExclusionFile to specify the name of an exclusion file. For example,
to specify exclusion file my exclusion.xml in S:\work:
mo .MAModelExclusionFile = ['S:\work\', 'my exclusion.xml']

3 Open the Model Advisor Exclusion Editor dialog box. The Exclusion File field
contains the specified exclusion file and path.

Exclude Blocks from Edit Time Checking

While editing a model, you can exclude blocks from Model Advisor analysis. Applicable
Model Advisor exclusions specified through the Simulink editor are also applied during
edit-time.

To exclude a block from Model Advisor analysis during edit-time:

From the command prompt, open sldemo fuelsys.

Introduce a warning that is visible in edit-time checking. Add the number 9 to the
beginning of the Engine Speed block name. This number causes a violation in “Check
character usage in block names”.

3 Inthe Modeling tab, select Edit-Time Checks. The Scope block flags the warning
Block name has incorrect characters.

Exclude Blocks From the Model Advisor Check Analysis

Fault-Tolerant Fuel Control System

[

Throttle —
l.1 Iy 4 >
throttle_sw il >
Das+hh~ard Ij ! throttle —| engine spaad 02_out &
Thrattle Angle il (radis) | yrass) 1
Fault Switch Thrattle_Angle_Selector
engine_speed - —p| throttle angle AP =r)
9Engine Speed speed_sw » » {de) e =
speed
Engine Speed —
Fault Switch N - s i
Engine_Speed_Selector Convert | plsensors fuel_rate {GJSJ‘; onvert — | fuel Sl =
— ok} fual (9/5) |4aiss I
»
ego_sw il g | ToFlant Engine Gas Dynamics
EGO Fault Switch —
B fuel_rate_control
02_Voltage_Selector Foal l l air_fuel_ratio
K
map_sw il >
map
MAP Fault Switch |
MAP_Selector
To Controller
Open the Dashboard subsystem to simulate any combination of sensor failures. Copyright 1990-2016 The MathiWorks, Inc.

4 To exclude the Engine Speed block from Model Advisor analysis, either:
a Right-click the block, select Model Advisor > Exclude block only > Select
checks, and select the check.

b Click the warning icon and click the Ignore button. For this block, clicking
Ignore adds an exclusion to Model Advisor analysis.

The block is excluded from Model Advisor analysis for that check and no longer displays a
highlight. You can repeat this process for further edit-time warnings.

Note The list of edit-time exclusions is shared between the Model Advisor and edit-time
checking.

Limit Model Checks by Excluding Gain and Outport Blocks

This example shows how to exclude a Gain block and all Outport blocks from a Model
Advisor check during a Model Advisor analysis. By excluding individual blocks from

3-21

3 Checking Systems Interactively

checks, you limit the scope of the analysis and might save time during model development
and verification.

At the MATLAB command line, type sldemo mdladv.

From the model window, in the Modeling tab, select Model Advisor to open the
Model Advisor. A System Selector - Model Advisor dialog box opens. Click OK.

3 In the left pane of the Model Advisor window, expand By Product > Simulink.
Select the Show report after run check box to see an HTML report of check results
after you run the checks.

4 Note If the By Product folder is not displayed in the Model Advisor window, select
Show By Product Folder from the Settings > Preferences dialog box.

5 Run the selected checks by clicking the Run selected checks button. After the
Model Advisor runs the checks, an HTML report displays the check results in a
browser window. The check Identify unconnected lines, input ports, and output
ports triggers a warning.

6 In the left pane of the Model Advisor window, select the check By Product >
Simulink > Identify unconnected lines, input ports, and output ports.

In the Model Advisor window, click the Enable highlighting button (E}).

* The model window opens. The blocks causing the Identify unconnected lines,
input ports, and output ports check warning are highlighted in yellow.

- —

- —

* The Model Advisor Highlighting window opens with a link to the Model Advisor
window. In the Model Advisor window, you can find more information about the
check results and how to fix the warning condition.

3-22

matlab:sldemo_mdladv

Exclude Blocks From the Model Advisor Check Analysis

[4] Model Advisar Highlighting - sldemo_mdladh =] = =]
#% - W

£% Identify unconnected lines, input ports, and output ports Cpen Resulks

8 After reviewing the check results, exclude the Gain2 block from all Model Advisor
checks:

a In the model window, right-click the Gain2 block and select Model Advisor >
Exclude block only > All checks .

Model Advisor 3 Exclude all blocks of type Gain »

2
P — N Exclude block only All checks

Open Model Advisor Exclusien Editor Only failed checks
HDL Code Generaticn 3 Select checks ...
PLC Code Generation >
Identify uncannected lines, input ports, and outpu...

Linear Analysis »

b In the Model Advisor Exclusion Editor dialog box, double-click in the first row of
the Rationale field, and enter Exclude gain block.

1) Model Advisor Exclusion Editor @
File

Store exclusions in model file

Exclusions

Model: sldemo_mdlady

Rationale | Type | Walue | Check ID(s)
Exclude gain block Block sldero_mdladv/G... all checks

Remove Exclusion Rerun Model Advisor checks to update results and highlighting

[OK H Cancel H Help || Apply |

¢ Click OK to store the exclusion in the model file.

3-23

3 Checking Systems Interactively

9 After reviewing the check results, exclude all Outport blocks from the Identify
unconnected lines, input ports, and output ports check:

a Right-click the Out4 block and select Model Advisor > Exclude all blocks of
type Outport > Identify unconnected lines, input ports, and output ports.

b In the Model Advisor Exclusion Editor dialog box, click OK to store the exclusion
in the model file.

10 In the left pane of the Model Advisor window, select By Product > Simulink and
then:

* Select the Show report after run check box.
* Click Run Selected Checks to run a Model Advisor analysis.

11 After the Model Advisor completes the analysis, you can view exclusion information
for the Identify unconnected lines, input ports, and output ports check in the:

* HTML report:

L] ldentify unconnected lines, input ports, and output ports
[dentify unconnected lines, input ports, and output ports in the model
Passed

There are no unconnected lines, input ports, and output ports in this
model.

Check Exciusions Rules

Exclusion for all blocks of type Outport 1
Exclude gain block 1

* Model Advisor window. In the left pane of the Model Advisor window, select By
Product > Simulink > Identify unconnected lines, input ports, and output
ports.

3-24

See Also

Identify unconnected lines, input porte, and output ports inthe model

Passed
Thete are no uneonnected lines, input ports, and output ports in this model.

Check Exclusions Rules

Exclusion for all blocks of type Cutport 1
Exchude gain block 1

12 Close sldemo_mdladv.

See Also

Related Examples

. “Exclude Blocks From Custom Checks” on page 7-83

. “Run Model Advisor Checks and Review Results” on page 3-5
. “Address Model Check Results” (Simulink)

. “Generate Model Advisor Reports” on page 3-105

. “Save and View Model Advisor Check Reports” (Simulink)

. “Find Model Advisor Check IDs” (Simulink)

. “Archive and View Results” on page 4-7

More About
. “Check Your Model Using the Model Advisor” (Simulink)
. “Exclude Blocks From the Model Advisor Check Analysis” on page 3-14

3-25

3 Checking Systems Interactively

Transform Model to Variant System

3-26

You can use the Model Transformer tool to improve model componentization by replacing
qualifying modeling patterns with Variant Source and Variant Subsystem, Variant Model
blocks. The Model Transformer reports the qualifying modeling patterns. You choose
which modeling patterns the tool replaces with a Variant Source block or Variant
Subsystem block.

The Model Transformer can perform these transformations:

» If an If block connects to one or more If Action Subsystems and each one has one
outport, replace this modeling pattern with a subsystem and a Variant Source block.

» If an If block connects to an If Action Subsystem that does not have an outport or has
two or more outports, replace this modeling pattern with a Variant Subsystem block.

» If a Switch Case block connects to one or more Switch Case Action Subsystems and
each one has one outport, replace this modeling pattern with a subsystem and a
Variant Source block.

» If a Switch Case block connects to a Switch Case Action Subsystem that does not have
an outport or has two or more outports, replace this modeling pattern with a Variant
Subsystem block.

* Replace a Switch block with a Variant Source block.

* Replace a Multiport Switch block that has two or more data ports with a Variant
Source block.

For the Model Transformer tool to perform the transformation, the control input to
Multiport Switch or Switch blocks and the inputs to If or Switch Case blocks must be
either of the following:

* A Constant block in which the Constant value parameter is a Simulink.Parameter
object of scalar type.

* Constant blocks in which the Constant value parameters are Simulink.Parameter
objects of scalar type and some other combination of blocks that form a supported
MATLAB expression. The MATLAB expressions in “Operators and Operands in Variant
Condition Expressions” (Simulink) are supported except for bitwise operations.

Example Model

This example shows how to use the Model Transformer to transform a model into a
variant system. The example uses the model rtwdemo_controlflow opt. This model

Transform Model to Variant System

has three Switch blocks. The control input to these Switch blocks is the
Simulink.Parameter cond. The Model Transformer dialog box and this example refer
to cond as a system constant.

Cond
Const
1} -
o>
|
2} g | »
ol
|
» |
- >
—

Open the model. In the Command Window, type rtwdemo controlflow opt.

2 Open the Switchl Block Parameters dialog box. Change the Threshold parameter
to 0. The Threshold parameter must be an integer because after the variant
transformation it is part of the condition expression in the Variant Source block.

3 Repeat step 2 for the Switch blocks Switchl, Switch2, and Switch3.
Save the model to your working folder.

3-27

3 Checking Systems Interactively

Perform Variant Transform on Example Model

1 From the Model Editor, open the Model Transformer by selecting Analysis >
Refactor Model > Model Transformer. Or, in the Command Window, type:
mdltransformer('rtwdemo controlflow opt')

2 Select the check “Transform the model to variant system”.

3-28

Transform Model to Variant System

& Model Transformer - twdeme_controlflow_opt

Edit Help

e —T

v [Model Transformer

~ [Transformations
[=] Transform model to variant system
=] Eliminate data store blocks

Transform model to variant system
Analysis
Click Run This Check to identify these modeling components:

» System constants that qualify to be part of condition expressions in Variant Source or

Variant Subsystem blocks.
» Blocks that qualify for transformation into Variant Subsystem or Variant Source blocks.

In the Specify system constant cell array field, specify a cell array of character vectors
consisting of Simulink.Parameters. The base workspace must contain their definitions.

Input Parameters

Specify system constant cell array |e.g. system_consts |

Prefix of transformed model name |genrO_ |

Run This Check

Result: [Not Run

Click Run This Check.

Action
Create a model that replaces the selected blocks with Variant Source or Variant Subsystemn
blocks.

Refactor Model

Result:

Help Apply

3-29

3 Checking Systems Interactively

3-30

In the Specify system constant cell array field, you can specify a cell array of
character vectors consisting of Simulink.Parameters. The base workspace must
contain their definitions.

In the Prefix of transformed model name field, specify a prefix for the model
name. If you do not specify a prefix, the default is gen0.

Select Run This Check. The Model Transformer lists system constants and blocks
that qualify to be part of condition expressions in Variant Source or Variant
Subsystem blocks. For the Model Transformer to list a system constant, it must be a
Simulink.Parameter object of scalar type. For this example, Cond qualifies to part
of a condition expression.

If you do not want one of the transformations to occur, you can clear the check box
next to it.

Select Refactor Model. The Model Transformer provides a hyperlink to the
transformed model and hyperlinks to the corresponding blocks in the original model
and the transformed model.

The transformed model or models are in the folder that has the prefix m2m plus the
original model name. For this example, the folder name is
m2m_rtwdemo _controlflow opt.

In the original model rtwdemo _controlflow_ opt, right-click one of the Switch
blocks. In the menu, select Model Transformer > Traceability to Transformed
Block. In the transformed model gen®@ rtwdemo controlflow opt, the
corresponding Variant Source block is highlighted.

In the transformed model gen® rtwdemo controlflow opt, right-click one of the
Switch blocks. In the menu, select Model Transformer > Traceability to Original
Block. In the original model rtwdemo controlflow opt, the corresponding
Switch block is highlighted.

Model Transformation Limitations

The Model Transformer tool has these limitations:

In order to run the Model Transformer on a model, you must be able to simulate the
model.

If an If Action Subsystem block drives a Merge block, and the Merge block has
another inport that is either unconnected or driven by another conditional subsystem,
the Model Transformer does not add a Variant Source block. This modeling pattern
produces a warning and an excluded candidate message.

See Also

* The Model Transformer cannot perform a variant transformation for every modeling
pattern. This list contains some exceptions:
* The model contains a protected model reference block.

* A model contains a Variant Source block with the Analyze all choices during
update diagram and generate preprocessor conditionals parameter set to
off.

» After you run one or more tasks, you cannot rerun the tasks because the Run this
Task and Run All buttons are deactivated. If you want to rerun a task, reset the
Model Transformer by right-clicking Model Transformer and selecting Reset.

* Do not change a model in the middle of a transformation. If you want to change the
model, close the Model Transformer, modify the model, and then reopen the Model
Transformer.

» For the hyperlinks in the Model Transformer to work, you must have the model to
which the links point to open.

See Also

Related Examples
. “Variant Systems” (Simulink)

3-31

3 Checking Systems Interactively

Enable Component Reuse by Using Clone Detection

3-32

Clones are modeling patterns that have identical block types and connections. The Clone
Detector app identifies clones across referenced model boundaries. You can use the Clone
Detector app to reuse components by creating library blocks from subsystem clones and
replacing the clones with links to those library blocks. You can also use the tool to link to
clones in an existing library.

Exact Clones and Similar Clones

There are two types of clones: exact clones and similar clones. Exact clones have identical
block types, connections, and parameter values. Similar clones have identical block types
and connections, but they can have different block parameter values. For example, the
value of a Gain block can be different in similar clones but must be the same in exact
clones.

Exact clones and similar clones can have these differences:

* Two clones can have a different sorted order.

* The length of signal lines and the location and size of blocks can be different if the
block connections are the same.

» Blocks and signals can have different names.

To detect only exact clones, for each check in the Identify Modeling Clones tool, set the
Maximum Number of Unmatched Block Parameters to 0. Increasing this parameter
value increases the number of similar clones that the tool can potentially detect.

After you identify clones, you can replace them with links to library blocks. Similar clones

link to masked library subsystems.

Identify Exact and Similar Clones

This example shows how to use the Clone Detector app to identify exact clones and
similar clones, and then replace them with links to library blocks.

1 Open the model ex clone detection. At the MATLAB command line, enter:

addpath(fullfile(docroot, 'toolbox', 'simulink', 'examples'))
ex_clone detection

Enable Component Reuse by Using Clone Detection

(O ——»fm aunt

ex_clone_detection

outs

s

Product

Variant Source1

¥

Copyright 2017 The MathWarks Inc.

852
" G12 1 Outl in1
@ >
e = i
883
b 554
G4
B ——m utt
In§ -, [> -
G ——fm2 G1
g 887
556
ex_clone_library
Outd
libsubsystem
2

I

Wariant Source2

Save the model to your working folder. A model must be open to access the app.

D

Out1

Out2

3 Checking Systems Interactively

3-34

N E&

View

-

On the Apps tab, click Clone Detector. Alternatively, on the MATLAB command line
enter:

clonedetection("ex_clone detection")
The app opens the Clone Detector tab. This example takes you through each section.

@ Find Clones in System El L>

Settings ex_clone_detection_Task1 ¥ Find Replace
= Clones Clones =
PREPARE DETECT REFACTOR VERIFY

Set Up panes for Clone Detection

The app displays information on multiple panes. You can select three of the panes under
the View menu. The panes are:

Help. Select to access a help pane that contains an overview of the clone detection
workflow.

Results. Select to view the Clone Detection and Results pane.
Properties. Select to view the Detected Clone Properties pane.

Set the Parameters for Clone Detection

You can set up the parameters for clone detection by using the Settings drop-down
menu.

Select Ignore differences in > Signal Names to identify and classify clones when
the signal names are different.

Select Ignore differences in > Block Properties to identify and classify clones
when the block properties are different. For more information about block properties,
see “Specify Block Properties” (Simulink).

Click Exclude Components to access the Exclude model references, Exclude
library Links, and Exclude inactive and commented out regions options.
Enabling the Exclude inactive and commented out regions option identifies
variable number clones because of Variant Source block in the model. For more
information, see “Exclude subsystems and referenced models from clone detection”.
Enabling the Exclude model references and Exclude library Links options will lead
to identification of fewer clones, depending on the model.

Enable Component Reuse by Using Clone Detection

* Click Match Patterns with Libraries and select an external library to look for
clones. For more information, see “Identifying and Replacing Clones in Model
Libraries” on page 3-39.

* The Maximum number of unmatched block parameters is 50 by default. This
represents the number of parameters that can vary among subsystems and still be
classified as similar clones. You may reduce this number to identify and classify fewer
similar clones. Setting the value to zero, will identify only exact clones.

Identify Clones in the Model

1 In the Detect section, in the Find Clones in System tab, enter
ex_clone detection as the model to identify clones in. Toggle the pin to access
other subsystems to identify clones in.

Find Clones in System

ex_clone_detection ﬂ‘

L

Click Find Clones to identify clones.

The color of the subsystems changes to reflect the similar and exact clones identified.
The red highlighting represents exact clones and the different shades of blue
highlighting represent similar clones.

3-35

3 Checking Systems Interactively

G r—m outt outt
int
(@D In2 outz Inz outz > x
In2
Product
outs|
=
552
outt
la
outt o

Variant Source1

G o——tm outt
in5
a J{} 1n2
a -
Variant Source2
in6

Copyright 2017 The MathWarks Inc.

Analyze the Clone Detection Results

After identifying clones, you can analyze the results of the clone detection and make
changes to the model as necessary. To analyze the results:

1 In the Clone Detection Action and Results panel, on the Logs pane, click the
hyperlink.

A new window opens the clone detection results with an integrated report on the
identified clones, the types of clones, the parameters of detection, and the exclusions
in the clone detection.

2 In the Clone Detection Action and Results pane, click the Map Clone Groups to
Library tab.

A list of clone groups are displayed.

3-36

Enable Component Reuse by Using Clone Detection

Click the > symbol next to Exact Clone Group 1 to see all of the subsystems that
are exact clones, the number of blocks, and the block differences. Repeat the same
for Similar Clone Group 1and Similar Clone Group 2.

Click the Model Hierarchy tab. Click the hyperlinks to highlight the subsystems that
are present in the model.

On the Map Clone Groups to Library tab, expand Similar Clone Group 1 and
click the View Parameter Difference hyperlink.

On the Detected Clone Properties panel, click the ex clone detection/SS5/G9
hyperlink, which opens the gain block G9 in the subsystem SS5, where you can
access the parameter that are different from the baseline subsystem.

Change value of the gain parameter from A to B and click Find Clones. This will

reclassify Similar Clone Group 1to Exact Clone Group 2 because you
resolved the difference in the subsystems and converted it into an exact clone.

Under the Refactor Benefits panel, you can consider the percentage of different
types of clones present.

In the Clone Detection Actions and Results pane, in the Map Clone Groups to
Library tab, select the clones you would like to refactor. Select all the clone groups

3-37

3 Checking Systems Interactively

for refactoring to reduce 22.5806% of the model reuse.
Detected Clone properties o
Block Difference between clone candidates of clone group:

ex_clone detection/SS5/G9
" Parameters: Gain

Refactor Benefits

Overall [) 22.5806

Exact () 6.4516

Similar () 16.129

Replace Clones

1 You may use the default library name or change the name of the library file and its
location on the Map Clone Groups to Library tab before replacing the clones.

3-38

Enable Component Reuse by Using Clone Detection

Click Replace Clones.

The model is refactored and the clones are replaced with links to the
newLibraryFile library file in your working directory.

You can restore the model to its original configuration with clones by clicking
Restore button found in the clone detector log that was generated on the Logs tab of
the Clone Detector Actions and Results pane.

Identifying and Replacing Clones in Model Libraries

1

Open the library ex clone library. At the MATLAB command line, enter:
addpath(fullfile(docroot, 'toolbox"', 'simulink', 'examples'))
ex_clone library

Click Settings > Match Patterns with Libraries and select
ex_clone library.slx. Then click Find Clones.

Note Identifying and refactoring clones in external libraries must be done separately
from the model. During model refactoring only exact clones within the libraries will
be replaced library links.

Click Replace Clones.

The model is refactored with the exact clones replaced.

Check the Equivalency of the Model

If you have a Simulink Test license, you can click Check Equivalency. A window opens
and displays that the current model has been successfully refactored into an equivalent
model.

3-39

3 Checking Systems Interactively

3-40

B Equivalency Check - Clone Detector >

o Simulink Test found the replacement
model to be equivalent to the original
. model.

View Resulis

Close
See Also
Related Examples
. “Custom Libraries” (Simulink)
. “Generate Reusable Code from Library Subsystems Shared Across Models”
(Simulink Coder)

. Clone Detector

Improve Model Readability by Eliminating Local Data Store Blocks

Improve Model Readability by Eliminating Local Data
Store Blocks

You can use the Model Transformer tool to improve model readability by replacing Data
Store Memory, Data Store Read, and Data Store Write blocks with either a direct signal
line, a Delay block, or a Merge block. For bus signals, the tool might also add Bus Creator
or Bus Selector blocks as part of the replacement. Replacing these blocks improves model
readability by making data dependency explicit. The Model Transformer creates a model
with these replacements. The new model has the same functionality as the existing model.

The Model Transformer can replace these data stores:

» For signals that are not buses, if a Data Store Read block executes before a Data Store
Write block, the tool replaces these blocks with a Delay block.

» For signals that are not buses, if a Data Store Write block executes before a Data Store
Read block, the tool replaces these blocks with a direct connection.

» For bus signals, if the write to bus elements executes before the read of the bus, the
tool replaces the Data Store Read and Data Store Write blocks with a direct
connection and a Bus Creator block.

» For bus signals, if the write to the bus executes before the read of bus elements, the
tool replaces the Data Store Read and Data Store Write blocks with a direct
connection and a Bus Selector block.

» For conditionally executed subsystems, the tool replaces the Data Store Read and Data
Store Write blocks with a direct connection and a Merge block. For models in which a
read/write pair crosses an If subsystem boundary and the Write block is inside the
subsystem, the tool might also add an Else subsystem block.

The Model Transformer tool eliminates only local data stores that Data Store Memory
blocks define. The tool does not eliminate global data stores. For the Data Store Memory
block, on the Signal Attributes tab in the block parameters dialog box, you must clear
the Data store name must resolve to Simulink signal object parameter.

Example Model

The model ex_data store elimination contains the two local data stores: B and A.
For data store B, there are two Data Store Read blocks and one Data Store Write block.
For data store A, there is one Data Store Write block and one Data Store Read block. The
red numbers represent the sorted execution order.

3-41

3 Checking Systems Interactively

3-42

This modeling pattern demonstrates how the Model —
Transformer tool can replace Data Store Read blocks B
that execute before Data Store Write blocks with a
Delay block.
Data Store
Memaory
BD-E dioubls
Data Store > 0% fdoutte > EE':
Read >+
. Add Data Store
0:73 |double
4 Write
Constant
A= >3
Data Store I
Read1
This modeling pattern demonstrates how the Model —n
Transformer tool can replace Data Store Write blocks A
that execute before Data Store Read blocks with a
direct connection.
Data Store
Memory1

1 :M > u+5_€ﬂm ':_,E._Tl
I Bias Data Store
Write1
A = » B
Data Store Out2
Read2

Copyright 2017 The MathWorks,

Inc.

Improve Model Readability by Eliminating Local Data Store Blocks

Replace Data Store Blocks

Identify data store blocks that qualify for replacement. Then, create a model that replaces
these blocks with direct signal lines, Delay blocks, or Merge blocks.

1

Open the model ex data store elimination. At the MATLAB command line,
enter:

addpath(fullfile(docroot, 'toolbox"', 'simulink', 'examples'))
ex_data_store_elimination
Save the model to your working folder.

In the Simulink Editor, from the Analysis menu, select Refactor Model > Model
Transformer. To open the Model Transformer programmatically, at the MATLAB
command prompt, type this command:

mdltransformer('ex data store replacement').

In the Transformations folder, select the Eliminate data store blocks check.
In the Prefix of refactored model field, specify a prefix for the refactored model.

Click the Run This Check button. The top Result table contains hyperlinks to the
Data Store Memory blocks and the corresponding Data Store Read and Data Store
Write blocks that qualify for elimination.

Click the Refactor Model button. The bottom Result table contains a hyperlink to
the new model. The tool creates an m2m_ex data store replacement folder. This
folder contains the gen_ex data store replacement.slx model.

3-43

3 Checking Systems Interactively

v (@ Model Transformer

v [&) Transformations
[5] Transform model to variant system
[~ @ Eliminate data store blocks

& Model Transformer - ex_data_store_elimination — O b
Edit Help
e —
Eliminate data store blocks
A

Analysis
Identify data stores that are eligible for elimination. Deselect blocks that you do not want to
eliminate from your model.

Input Parameters

Prefix of refactored model |gen_

Result: @ Passed

~
Data store memory Data store access Sorted execution
block blocks order

M .../Data Store Memory

..../Data Store Read 0:2

..../Data Store Write 0:5

.../Data Store Readl 0:6
[.../Data Store Memoryl

-.../Data Store Write1 0:1

..../Data Store Read2 0:8

<

Action

Create a model that replaces the selected blocks with blocks that improve model readability by
making data dependency explicit. The new model name contains the prefix that you specify in the
Prefix of model name field plus the original model name.

Refactor Model

Result:

Transformed model
Click the hyperlink to navigate to the model where selected data store elimination

is completed.

e gen ex data store elimination

[nep | [Aply

3-44

See Also

For local data store A, gen_ex_bus struct in code.slx contains a Delay block in
place of the Data Store Write block and a direct signal connection in place of the Data
Store Read block. For local data store B, gen_ex_bus_struct _in code.slx contains a
direct signal connection from the Bias block to Out2.

Limitations

The Model Transformer does not replace Data Store Read and Write blocks that meet
these conditions:

They cross boundaries of conditionally executed subsystems such as Enabled,
Triggered, or Function-Call subsystems and Stateflow Charts.

They do not complete mutually exclusive branches of If-Action subsystems.
They cross boundaries of variants.

They have more than one input or output.

They access part of an array.

They execute at different rates.

They are inside different instances of library subsystems and have a different relative
execution order.

See Also

Related Examples

“Refactor Models”
“Data Stores” (Simulink)

“Data Stores in Generated Code” (Simulink Coder)

3-45

3 Checking Systems Interactively

Improve Efficiency of Simulation by Optimizing
Prelookup Operation of Lookup Table Blocks

3-46

Improve the efficiency of your model simulation by using the Model Transformer tool to
identify n-D Lookup Table blocks that qualify for transformation and replacing them with
Interpolation blocks and shared Prelookup blocks. Eliminating the redundant Prelookup
blocks improves the simulation speed for linear interpolations. The Model Transformer
creates a model with these replacements blocks. This new model has the same
functionality as the original model.

The Model Transformer can replace Lookup Table blocks that meet the following
conditions:
» The same source drives the Lookup Table blocks.

* The Lookup Table blocks share the same breakpoint specification, values, and data
types.

* The Lookup Table blocks share the same algorithm parameters in the block
parameters dialog box.

* The Lookup Table blocks share the same data type for fractions parameters in the
block parameters dialog box.

* The data type of the Lookup Table block fractions and breakpoint are double, single,
int8, uint8, int16, uintl6, int32, or uint32.

Example Model

The model mLutOptim contains three Lookup Table blocks: LUT1, LUT2 and LUT3. The
blocks are driven from the same input sources Inl and In2.

Improve Efficiency of Simulation by Optimizing Prelookup Operation of Lookup Table Blocks

2x1

In1 :
Bias1

ui

uz2

2-D T(u)

o=

In2

Merge Prelookup Operation

LUT1

ui

uz

2-D T(u)

Out1

LUTZ2

ui

u2

2-D T(u)

Out2

LUT3

Out3

Identify n-D Lookup Table blocks that qualify for transformation and replace them with a

single shared Prelookup block and multiple Interpolation blocks.

1 Open the model mLutOptim. At the MATLAB command line, enter:

addpath(fullfile(docroot, 'toolbox', 'simulink', 'examples'))mLutOptim

2 Save the model to your working folder.

3-47

3 Checking Systems Interactively

3-48

In the Simulink Editor, from the Analysis menu, select Refactor Model > Model
Transformer.

In the Transformations folder, select the “Transform table lookup into prelookup
and interpolation” check.

Select the Skip Lookup Table (n-D) blocks in the libraries from this
transformation option to avoid replacing Lookup Table blocks that are linked to a
library.

In the Prefix of refactored model field, specify a prefix for the new refactored
model.

Click the Run This Check button. The top Result table contains hyperlinks to the
Lookup Table blocks and the corresponding input port indices.

Clear the Candidate Groups that you do not want to transform.

Click the Refactor Model button. The Result table contains a hyperlink to the new
model. The table also contains hyperlinks to the shared Prelookup block and
corresponding Interpolation blocks. Those blocks replaced the original Lookup Table
blocks. The tool creates an m2m_mLUTOptim folder. This folder contains the new
gen mLUTOptim.s1x model.

Improve Efficiency of Simulation by Optimizing Prelookup Operation of Lookup Table Blocks

2 Model Transformer - mLutOptim

e —

hd P‘_p Model Transformer
v 3 Transformations

- - Click Run This Check to identify Lookup Table blecks that qualify for transformation into a single shared
] Transform model to variant system

= v Prelookup block and multiple Interpolation blocks.

(=] Eliminate data store blocks

=] Transform table lookup into prelookup The eriteria for medification is:

» The same source drives the Lookup Table blocks.

#» The Lookup Table blocks share the same break points.

#» The Lookup Table blocks share the same algorithm parameters.

Tr i table lookup into prelookup and interpolation
Analysis

Input Parameters

Skip Lookup Table {n-0) blocks in libraries from this transformation.

Prefix of transformed model name | gen2_

Run This Check

Result: [=] Not Run

Click Run This Check.

Help Apply
< >

The Lookup Table blocks LUT1, LUT2, and LUT3 of gen_mLutOptim.slx have two
shared Prelookup table blocks, LUT1 Prelookup 1 and LUT1 Prelookup_ 2, one for
each data source. There are also three Interpolation blocks LUT1 InterpND,

LUT2 InterpND, and LUT3 InterpND that replace the Lookup Table blocks.

3-49

3 Checking Systems Interactively

®_lzx1l

In1

-

u+1

>

Bias1

LUT1_Prelookup_0

'—.—.—.—

In2

LUT1_Prelookup 1

=2

K1 2D T(k)

f1
k2
f2

(D

Out1

LUT1_InterpND

AN

K1 2-DT(kf)

f1
k2
f2

Out2

LUT2 InterpND

o>
5

Conditions and Limitations

L

k1 2-D T(kf)
f1

k2
f2

Out3

LUT3_InterpND

The Model Transformer cannot replace Lookup Table blocks if:

* A Rate Transition block drives the Lookup Table blocks.
* The Lookup Table blocks are commented-out regions and inactive variants.

* The Lookup Table blocks are masked.

3-50

See Also

* The Output block's data type is set to Inherit:Same as first input.

* The Lookup Table block Interpolation method and Extrapolation method on the
Algorithm pane of the block parameters dialog box is set to Cubic spline.

* The Lookup Table block Input settings on the Algorithm pane of the block
parameters dialog box has Use one input port for all input data selected.

The Lookup Table block Code generation on the Algorithm pane of the block
parameters dialog box has Support tunable table size in code generation selected.

The Model Transformer tool does not replace Lookup Table blocks across the boundaries
of Atomic subsystems, Referenced Models, and library-linked blocks.

See Also
Related Examples

. “Refactor Models”
. “Transform table lookup into prelookup and interpolation”

3-51

3 Checking Systems Interactively

Model Checks for DO-178C/D0O-331 Standard Compliance

3-52

You can check that your model or subsystem complies with selected aspects of the
DO-178C safety standard by running the Model Advisor.

To check compliance with DO standards, open the Model Advisor on page 3-5 and run the
checks in By Task > Modeling Standards for DO-178C/D0O-331.

For information on the DO-178C Software Considerations in Airborne Systems and
Equipment Certification and related standards, see Radio Technical Commission for
Aeronautics (RTCA).

The table lists the DO-178C/D0O-331 checks.

DO-178C/DO-331 Check

Display model version information

Check for Discrete-Time Integrator blocks with initial condition uncertainty

Check root model Inport block specifications

Identify unconnected lines, input ports, and output ports

Check usage of tunable parameters in blocks

Check for Strong Data Typing with Simulink I/O

Check for blocks that have constraints on tunable parameters

Identify questionable subsystem settings

Check bus signals treated as vectors

Check for potentially delayed function-call subsystem return values

Check usage of Merge blocks

Check Stateflow data objects with local scope

Check usage of exclusive and default states in state machines

Identify disabled library links

Identify parameterized library links

Identify unresolved library links

Check for model reference configuration mismatch

Check for parameter tunability information ignored for referenced models

https://www.rtca.org/
https://www.rtca.org/

Model Checks for DO-178C/D0-331 Standard Compliance

DO0-178C/D0-331 Check
Identify requirement links that specify invalid locations within documents

Identify requirement links with missing documents

Identify requirement links with path type inconsistent with preferences

Identify selection-based links having descriptions that do not match their requirements
document text

Check sample times and tasking mode

Check solver for code generation

Check the hardware implementation

Display bug reports for DO Qualification Kit

Display bug reports for Embedded Coder

Display bug reports for Polyspace Code Prover

Display bug reports for Polyspace Code Prover Server

Display bug reports for Polyspace Bug Finder

Display bug reports for Polyspace Bug Finder Server

Display bug reports for Simulink Code Inspector

Display bug reports for Simulink Report Generator

Display bug reports for Simulink Check

Display bug reports for Simulink Coverage

Display bug reports for Simulink Design Verifier

Display bug reports for Simulink Test

Display bug reports for Simulink Requirements

Display bug reports for Simulink

The following are the High-Integrity System Modeling checks that are applicable for the
DO-178C/D0-331 standards.

Model Checks for High Integrity Systems Modeling

You can check that your model or subsystem complies with selected aspects of the High
Integrity System Model safety standard by running the Model Advisor.

3-53

3 Checking Systems Interactively

3-54

To check compliance with High Integrity System Model standards, run the high-integrity

checks from these Model Advisor folders:

* By Task > Modeling Standards for DO-178C/D0-331 > High-Integrity Systems
* By Task > Modeling Standards for IEC 61508 > High-Integrity Systems
* By Task > Modeling Standards for IEC 62304 > High-Integrity Systems
* By Task > Modeling Standards for EN 50128 > High-Integrity Systems
* By Task > Modeling Standards for ISO 26262 > High-Integrity Systems

For information on the High Integrity System Model Software Considerations in Airborne
Systems and Equipment Certification and related standards, see Radio Technical

Commission for Aeronautics (RTCA).

The table lists the High Integrity System Model checks and their corresponding modeling
guidelines. For more information about the High-Integrity Modeling Guidelines, see
“High-Integrity System Modeling” (Simulink).

High Integrity Systems Modeling Checks

High Integrity System Model Check

Applicable High-Integrity System
Modeling Guidelines

Check usage of lookup table blocks

“hisl 0033: Usage of Lookup Table blocks”
(Simulink)

Check for inconsistent vector indexing
methods

“hisl 0021: Consistent vector indexing
method” (Simulink)

Check for variant blocks with 'Generate
preprocessor conditionals' active

“hisl 0023: Verification of model and
subsystem variants” (Simulink)

Check for root Inports with missing
properties

“hisl 0024: Inport interface definition”
(Simulink)

Check for Relational Operator blocks that
equate floating-point types

“hisl 0017: Usage of blocks that compute
relational operators (2)” (Simulink)

Check usage of Relational Operator blocks

“hisl 0016: Usage of blocks that compute
relational operators” (Simulink)

Check usage of Logical Operator blocks

“hisl 0018: Usage of Logical Operator
block” (Simulink)

https://www.rtca.org/
https://www.rtca.org/

Model Checks for DO-178C/D0-331 Standard Compliance

High Integrity System Model Check

Applicable High-Integrity System
Modeling Guidelines

Check usage of While Iterator blocks

“hisl 0006: Usage of While Iterator blocks”
(Simulink)

Check sample time-dependent blocks

“hisl 0007: Usage of For Iterator or While
Iterator subsystems” (Simulink)

Check usage of For Iterator blocks

“hisl 0008: Usage of For Iterator Blocks”
(Simulink)

Check usage of If blocks and If Action
Subsystem blocks

“hisl 0010: Usage of If blocks and If Action
Subsystem blocks” (Simulink)

Check usage Switch Case blocks and
Switch Case Action Subsystem blocks

“hisl 0011: Usage of Switch Case blocks
and Action Subsystem blocks” (Simulink)

Check safety-related optimization settings
for logic signals

“hisl 0045: Configuration Parameters >
Math and Data Types > Implement logic
signals as Boolean data (vs. double)”
(Simulink)

Check safety-related block reduction
optimization settings

“hisl 0046: Configuration Parameters >
Simulation Target > Block reduction”
(Simulink)

Check safety-related optimization settings
for application lifespan

“hisl 0048: Configuration Parameters >
Math and Data Types > Application lifespan
(days)” (Simulink)

Check safety-related optimization settings
for data initialization

“hisl 0052: Configuration Parameters >
Code Generation > Optimization > Data
initialization” (Simulink)

Check safety-related optimization settings
for data type conversions

“hisl 0053: Configuration Parameters >
Code Generation > Optimization > Remove
code from floating-point to integer
conversions that wraps out-of-range values”
(Simulink)

Check safety-related optimization settings
for division arithmetic exceptions

“hisl 0054: Configuration Parameters >
Code Generation > Optimization > Remove
code that protects against division
arithmetic exceptions” (Simulink)

3-55

3 Checking Systems Interactively

3-56

High Integrity System Model Check

Applicable High-Integrity System
Modeling Guidelines

Check safety-related code generation
settings for comments

“hisl 0038: Configuration Parameters >
Code Generation > Comments” (Simulink)

Check safety-related code generation
interface settings

“hisl 0039: Configuration Parameters >
Code Generation > Interface” (Simulink)

Check safety-related code generation
settings for code style

“hisl 0047: Configuration Parameters >
Code Generation > Code Style” (Simulink)

Check safety-related code generation
identifier settings

“hisl 0049: Configuration Parameters >
Code Generation > Identifiers” (Simulink)

Check usage of Abs blocks

“hisl 0001: Usage of Abs block” (Simulink)

Check usage of Math Function blocks (rem
and reciprocal functions)

“hisl 0002: Usage of Math Function blocks
(rem and reciprocal)” (Simulink)

Check usage of Math Function blocks (log
and log10 functions)

“hisl 0004: Usage of Math Function blocks
(natural logarithm and base 10 logarithm)”
(Simulink)

Check usage of Assignment blocks

“hisl 0029: Usage of Assignment blocks”
(Simulink)

Check usage of Signal Routing blocks

“hisl 0034: Usage of Signal Routing blocks”
(Simulink)

Check for root Inports with missing range
definitions

“hisl 0025: Design min/max specification of
input interfaces” (Simulink)

Check for root Outports with missing range
definitions

“hisl 0026: Design min/max specification of
output interfaces” (Simulink)

Check state machine type of Stateflow
charts

“hisf 0001: State Machine Type” (Simulink)

Check Stateflow charts for transition paths
that cross parallel state boundaries

“hisf 0013: Usage of transition paths
(crossing parallel state boundaries)”
(Simulink)

Check Stateflow charts for ordering of
states and transitions

“hisf 0002: User-specified state/transition
execution order” (Simulink)

Check Stateflow debugging options

“hisf 0011: Stateflow debugging settings”
(Simulink)

Model Checks for DO-178C/D0-331 Standard Compliance

High Integrity System Model Check

Applicable High-Integrity System
Modeling Guidelines

Check Stateflow charts for uniquely defined
data objects

“hisl 0061: Unique identifiers for clarity”
(Simulink)

Check Stateflow charts for strong data
typing

“hisf 0015: Strong data typing (casting
variables and parameters in expressions)”
(Simulink)

Check usage of shift operations for
Stateflow data

“hisf 0064: Shift operations for Stateflow
data to improve code compliance”
(Simulink)

Check assignment operations in Stateflow
charts

“hisf 0065: Type cast operations in
Stateflow to improve code compliance”
(Simulink)

Check Stateflow charts for unary operators

“hisf 0211: Protect against use of unary
operators in Stateflow Charts to improve
code compliance” (Simulink)

Check for Strong Data Typing with
Simulink I/O

“hisf 0009: Strong data typing (Simulink
and Stateflow boundary)” (Simulink)

Check for MATLAB Function interfaces with
inherited properties

“himl 0002: Strong data typing at MATLAB
function boundaries” (Simulink)

Check MATLAB Function metrics

“himl 0003: Limitation of MATLAB function
complexity” (Simulink)

Check MATLAB Code Analyzer messages

“himl 0004: MATLAB Code Analyzer
recommendations for code generation”
(Simulink)

Check safety-related model referencing
settings

“hisl 0037: Configuration Parameters >
Model Referencing” (Simulink)

Check safety-related diagnostic settings for
solvers

“hisl 0043: Configuration Parameters >
Diagnostics > Solver” (Simulink)

Check safety-related solver settings for
simulation time

“hisl 0040: Configuration Parameters >
Solver > Simulation time” (Simulink)

Check safety-related solver settings for
solver options

“hisl 0041: Configuration Parameters >
Solver > Solver options” (Simulink)

3-57

3 Checking Systems Interactively

3-58

High Integrity System Model Check

Applicable High-Integrity System
Modeling Guidelines

Check safety-related solver settings for
tasking and sample-time

“hisl 0042: Configuration Parameters >
Solver > Tasking and sample time options”
(Simulink)

Check safety-related diagnostic settings for
sample time

“hisl 0044: Configuration Parameters >
Diagnostics > Sample Time” (Simulink)

Check safety-related diagnostic settings for
parameters

“hisl 0302: Configuration Parameters >
Diagnostics > Data Validity > Parameters”
(Simulink)

Check safety-related diagnostic settings for
data used for debugging

“hisl 0305: Configuration Parameters >
Diagnostics > Data Validity > Debugging”
(Simulink)

Check safety-related diagnostic settings for
data store memory

“hisl 0013: Usage of data store blocks”
(Simulink)

Check safety-related diagnostic settings for
type conversions

“hisl 0309: Configuration Parameters >
Diagnostics > Type Conversion” (Simulink)

Check safety-related diagnostic settings for
signal connectivity

“hisl 0306: Configuration Parameters >
Diagnostics > Connectivity > Signals”
(Simulink)

Check safety-related diagnostic settings for
bus connectivity

“hisl 0307: Configuration Parameters >
Diagnostics > Connectivity > Buses”
(Simulink)

Check safety-related diagnostic settings
that apply to function-call connectivity

“hisl 0308: Configuration Parameters >
Diagnostics > Connectivity > Function
calls” (Simulink)

Check safety-related diagnostic settings for
compatibility

“hisl 0301: Configuration Parameters >
Diagnostics > Compatibility” (Simulink)

Check safety-related diagnostic settings for
model initialization

“hisl 0304: Configuration Parameters >
Diagnostics > Data Validity > Model
initialization” (Simulink)

Check safety-related diagnostic settings for
model referencing

“hisl 0310: Configuration Parameters >
Diagnostics > Model Referencing”
(Simulink)

Model Checks for DO-178C/D0-331 Standard Compliance

High Integrity System Model Check

Applicable High-Integrity System
Modeling Guidelines

Check safety-related diagnostic settings for
saving

“hisl 0036: Configuration Parameters >
Diagnostics > Saving” (Simulink)

Check safety-related diagnostic settings for
Merge blocks

“hisl 0303: Configuration Parameters >
Diagnostics > Data Validity > Merge
blocks” (Simulink)

Check safety-related diagnostic settings for
Stateflow

“hisl 0311: Configuration Parameters >
Diagnostics > Stateflow” (Simulink)

Check safety-related optimization settings
for Loop unrolling threshold

“hisl 0051: Configuration Parameters >
Code Generation > Optimization > Loop
unrolling threshold” (Simulink)

Check model object names

“hisl 0032: Model object names” (Simulink)

Check for model elements that do not link
to requirements

“hisl 0070: Placement of requirement links
in a model” (Simulink)

Check for inappropriate use of transition
paths

“hisf 0014: Usage of transition paths
(passing through states)” (Simulink)

Check usage of Bitwise Operator block

“hisl 0019: Usage of bitwise operations”
(Simulink)

Check data types for blocks with index
signals

“hisl 0022: Data type selection for index
signals” (Simulink)

Check model file name

“hisl 0031: Model file names” (Simulink)

Check if/elseif/else patterns in MATLAB
Function blocks

“himl 0006: MATLAB code if / elseif / else
patterns” (Simulink)

Check switch statements in MATLAB
Function blocks

“himl 0007: MATLAB code switch / case /
otherwise patterns” (Simulink)

Check global variables in graphical
functions

“hisl 0062: Global variables in graphical
functions” (Simulink)

Check for length of user-defined object
names

“hisl 0063: Length of user-defined object
names to improve MISRA C:2012
compliance” (Simulink)

Check usage of Merge blocks

“hisl 0015: Usage of Merge blocks”
(Simulink)

3-59

3 Checking Systems Interactively

3-60

High Integrity System Model Check

Applicable High-Integrity System
Modeling Guidelines

Check usage of conditionally executed
subsystems

“hisl 0012: Usage of conditionally executed
subsystems” (Simulink)

Check usage of standardized MATLAB
function headers

“himl 0001: Usage of standardized
MATLAB function headers” (Simulink)

Check usage of relational operators in
MATLAB Function blocks

“himl 0008: MATLAB code relational
operator data types” (Simulink)

Check usage of equality operators in
MATLAB Function blocks

“himl 0009: MATLAB code with equal / not
equal relational operators” (Simulink)

Check usage of logical operators and
functions in MATLAB Function blocks

“himl 0010: MATLAB code with logical
operators and functions” (Simulink)

Check type and size of conditional
expressions

“himl 0011: Data type and size of condition
expressions” (Simulink)

Check naming of ports in Stateflow charts

“hisf 0016: Stateflow port names”
(Simulink)

Check scoping of Stateflow data objects

“hisf 0017: Stateflow data object scoping”
(Simulink)

Check usage of Gain blocks

“hisl 0066: Usage of Gain blocks”
(Simulink)

Check usage of bitwise operations in
Stateflow charts

“hisf 0003: Usage of bitwise operations”
(Simulink)

Check data type of loop control variables

“hisl 0102: Data type of loop control
variables to improve MISRA C:2012
compliance” (Simulink)

Check configuration parameters for MISRA
C:2012

“hisl 0060: Configuration parameters that
improve MISRA C:2012 compliance”
(Simulink)

Check for blocks not recommended for C/C
++ production code deployment

Check for blocks not recommended for
MISRA C:2012

“hisl 0020: Blocks not recommended for
MISRA C:2012 compliance” (Simulink)

See Also

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check safety-related optimization settings |“hisl 0056: Configuration Parameters >
for specified minimum and maximum values |Code Generation > Optimization >
Optimize using the specified minimum and
maximum values” (Simulink)

See Also

Related Examples
. “Run Model Advisor Checks and Review Results” on page 3-5

3-61

3 Checking Systems Interactively

Model Checks for High Integrity Systems Modeling

3-62

You can check that your model or subsystem complies with selected aspects of the High
Integrity System Model safety standard by running the Model Advisor.

To check compliance with High Integrity System Model standards, run the high-integrity

checks from these Model Advisor folders:

* By Task > Modeling Standards for DO-178C/D0-331 > High-Integrity Systems
* By Task > Modeling Standards for IEC 61508 > High-Integrity Systems
* By Task > Modeling Standards for IEC 62304 > High-Integrity Systems
* By Task > Modeling Standards for EN 50128 > High-Integrity Systems

* By Task > Modeling Standards for ISO 26262 > High-Integrity Systems

For information on the High Integrity System Model Software Considerations in Airborne
Systems and Equipment Certification and related standards, see Radio Technical

Commission for Aeronautics (RTCA).

The table lists the High Integrity System Model checks and their corresponding modeling
guidelines. For more information about the High-Integrity Modeling Guidelines, see
“High-Integrity System Modeling” (Simulink).

High Integrity Systems Modeling Checks

High Integrity System Model Check

Applicable High-Integrity System
Modeling Guidelines

Check usage of lookup table blocks

“hisl 0033: Usage of Lookup Table blocks”
(Simulink)

Check for inconsistent vector indexing
methods

“hisl 0021: Consistent vector indexing
method” (Simulink)

Check for variant blocks with 'Generate
preprocessor conditionals' active

“hisl 0023: Verification of model and
subsystem variants” (Simulink)

Check for root Inports with missing
properties

“hisl 0024: Inport interface definition”
(Simulink)

Check for Relational Operator blocks that
equate floating-point types

“hisl 0017: Usage of blocks that compute
relational operators (2)” (Simulink)

https://www.rtca.org/
https://www.rtca.org/

Model Checks for High Integrity Systems Modeling

High Integrity System Model Check

Applicable High-Integrity System
Modeling Guidelines

Check usage of Relational Operator blocks

“hisl 0016: Usage of blocks that compute
relational operators” (Simulink)

Check usage of Logical Operator blocks

“hisl 0018: Usage of Logical Operator
block” (Simulink)

Check usage of While Iterator blocks

“hisl 0006: Usage of While Iterator blocks”
(Simulink)

Check sample time-dependent blocks

“hisl 0007: Usage of For Iterator or While
[terator subsystems” (Simulink)

Check usage of For Iterator blocks

“hisl 0008: Usage of For Iterator Blocks”
(Simulink)

Check usage of If blocks and If Action
Subsystem blocks

“hisl 0010: Usage of If blocks and If Action
Subsystem blocks” (Simulink)

Check usage Switch Case blocks and
Switch Case Action Subsystem blocks

“hisl 0011: Usage of Switch Case blocks
and Action Subsystem blocks” (Simulink)

Check safety-related optimization settings
for logic signals

“hisl 0045: Configuration Parameters >
Math and Data Types > Implement logic
signals as Boolean data (vs. double)”
(Simulink)

Check safety-related block reduction
optimization settings

“hisl 0046: Configuration Parameters >
Simulation Target > Block reduction”
(Simulink)

Check safety-related optimization settings
for application lifespan

“hisl 0048: Configuration Parameters >
Math and Data Types > Application lifespan
(days)” (Simulink)

Check safety-related optimization settings
for data initialization

“hisl 0052: Configuration Parameters >
Code Generation > Optimization > Data
initialization” (Simulink)

Check safety-related optimization settings
for data type conversions

“hisl 0053: Configuration Parameters >
Code Generation > Optimization > Remove
code from floating-point to integer
conversions that wraps out-of-range values”
(Simulink)

3-63

3 Checking Systems Interactively

3-64

High Integrity System Model Check

Applicable High-Integrity System
Modeling Guidelines

Check safety-related optimization settings
for division arithmetic exceptions

“hisl 0054: Configuration Parameters >
Code Generation > Optimization > Remove
code that protects against division
arithmetic exceptions” (Simulink)

Check safety-related code generation
settings for comments

“hisl 0038: Configuration Parameters >
Code Generation > Comments” (Simulink)

Check safety-related code generation
interface settings

“hisl 0039: Configuration Parameters >
Code Generation > Interface” (Simulink)

Check safety-related code generation
settings for code style

“hisl 0047: Configuration Parameters >
Code Generation > Code Style” (Simulink)

Check safety-related code generation
identifier settings

“hisl 0049: Configuration Parameters >
Code Generation > Identifiers” (Simulink)

Check usage of Abs blocks

“hisl 0001: Usage of Abs block” (Simulink)

Check usage of Math Function blocks (rem
and reciprocal functions)

“hisl 0002: Usage of Math Function blocks
(rem and reciprocal)” (Simulink)

Check usage of Math Function blocks (log
and log10 functions)

“hisl 0004: Usage of Math Function blocks
(natural logarithm and base 10 logarithm)”
(Simulink)

Check usage of Assignment blocks

“hisl 0029: Usage of Assignment blocks”
(Simulink)

Check usage of Signal Routing blocks

“hisl 0034: Usage of Signal Routing blocks”
(Simulink)

Check for root Inports with missing range
definitions

“hisl 0025: Design min/max specification of
input interfaces” (Simulink)

Check for root Outports with missing range
definitions

“hisl 0026: Design min/max specification of
output interfaces” (Simulink)

Check state machine type of Stateflow
charts

“hisf 0001: State Machine Type” (Simulink)

Check Stateflow charts for transition paths
that cross parallel state boundaries

“hisf 0013: Usage of transition paths
(crossing parallel state boundaries)”
(Simulink)

Model Checks for High Integrity Systems Modeling

High Integrity System Model Check

Applicable High-Integrity System
Modeling Guidelines

Check Stateflow charts for ordering of
states and transitions

“hisf 0002: User-specified state/transition
execution order” (Simulink)

Check Stateflow debugging options

“hisf 0011: Stateflow debugging settings”
(Simulink)

Check Stateflow charts for uniquely defined
data objects

“hisl 0061: Unique identifiers for clarity”
(Simulink)

Check Stateflow charts for strong data
typing

“hisf 0015: Strong data typing (casting
variables and parameters in expressions)”
(Simulink)

Check usage of shift operations for
Stateflow data

“hisf 0064: Shift operations for Stateflow
data to improve code compliance”
(Simulink)

Check assignment operations in Stateflow
charts

“hisf 0065: Type cast operations in
Stateflow to improve code compliance”
(Simulink)

Check Stateflow charts for unary operators

“hisf 0211: Protect against use of unary
operators in Stateflow Charts to improve
code compliance” (Simulink)

Check for Strong Data Typing with
Simulink I/O

“hisf 0009: Strong data typing (Simulink
and Stateflow boundary)” (Simulink)

Check for MATLAB Function interfaces with
inherited properties

“himl 0002: Strong data typing at MATLAB
function boundaries” (Simulink)

Check MATLAB Function metrics

“himl 0003: Limitation of MATLAB function
complexity” (Simulink)

Check MATLAB Code Analyzer messages

“himl 0004: MATLAB Code Analyzer
recommendations for code generation”
(Simulink)

Check safety-related model referencing
settings

“hisl 0037: Configuration Parameters >
Model Referencing” (Simulink)

Check safety-related diagnostic settings for
solvers

“hisl 0043: Configuration Parameters >
Diagnostics > Solver” (Simulink)

3-65

3 Checking Systems Interactively

3-66

High Integrity System Model Check

Applicable High-Integrity System
Modeling Guidelines

Check safety-related solver settings for
simulation time

“hisl 0040: Configuration Parameters >
Solver > Simulation time” (Simulink)

Check safety-related solver settings for
solver options

“hisl 0041: Configuration Parameters >
Solver > Solver options” (Simulink)

Check safety-related solver settings for
tasking and sample-time

“hisl 0042: Configuration Parameters >
Solver > Tasking and sample time options”
(Simulink)

Check safety-related diagnostic settings for
sample time

“hisl 0044: Configuration Parameters >
Diagnostics > Sample Time” (Simulink)

Check safety-related diagnostic settings for
parameters

“hisl 0302: Configuration Parameters >
Diagnostics > Data Validity > Parameters”
(Simulink)

Check safety-related diagnostic settings for
data used for debugging

“hisl 0305: Configuration Parameters >
Diagnostics > Data Validity > Debugging”
(Simulink)

Check safety-related diagnostic settings for
data store memory

“hisl 0013: Usage of data store blocks”
(Simulink)

Check safety-related diagnostic settings for
type conversions

“hisl 0309: Configuration Parameters >
Diagnostics > Type Conversion” (Simulink)

Check safety-related diagnostic settings for
signal connectivity

“hisl 0306: Configuration Parameters >
Diagnostics > Connectivity > Signals”
(Simulink)

Check safety-related diagnostic settings for
bus connectivity

“hisl 0307: Configuration Parameters >
Diagnostics > Connectivity > Buses”
(Simulink)

Check safety-related diagnostic settings
that apply to function-call connectivity

“hisl 0308: Configuration Parameters >
Diagnostics > Connectivity > Function
calls” (Simulink)

Check safety-related diagnostic settings for
compatibility

“hisl 0301: Configuration Parameters >
Diagnostics > Compatibility” (Simulink)

Model Checks for High Integrity Systems Modeling

High Integrity System Model Check

Applicable High-Integrity System
Modeling Guidelines

Check safety-related diagnostic settings for
model initialization

“hisl 0304: Configuration Parameters >
Diagnostics > Data Validity > Model
initialization” (Simulink)

Check safety-related diagnostic settings for
model referencing

“hisl 0310: Configuration Parameters >
Diagnostics > Model Referencing”
(Simulink)

Check safety-related diagnostic settings for
saving

“hisl 0036: Configuration Parameters >
Diagnostics > Saving” (Simulink)

Check safety-related diagnostic settings for
Merge blocks

“hisl 0303: Configuration Parameters >
Diagnostics > Data Validity > Merge
blocks” (Simulink)

Check safety-related diagnostic settings for
Stateflow

“hisl 0311: Configuration Parameters >
Diagnostics > Stateflow” (Simulink)

Check safety-related optimization settings
for Loop unrolling threshold

“hisl 0051: Configuration Parameters >
Code Generation > Optimization > Loop
unrolling threshold” (Simulink)

Check model object names

“hisl 0032: Model object names” (Simulink)

Check for model elements that do not link
to requirements

“hisl 0070: Placement of requirement links
in a model” (Simulink)

Check for inappropriate use of transition
paths

“hisf 0014: Usage of transition paths
(passing through states)” (Simulink)

Check usage of Bitwise Operator block

“hisl 0019: Usage of bitwise operations”
(Simulink)

Check data types for blocks with index
signals

“hisl 0022: Data type selection for index
signals” (Simulink)

Check model file name

“hisl 0031: Model file names” (Simulink)

Check if/elseif/else patterns in MATLAB
Function blocks

“himl 0006: MATLAB code if / elseif / else
patterns” (Simulink)

Check switch statements in MATLAB
Function blocks

“himl 0007: MATLAB code switch / case /
otherwise patterns” (Simulink)

Check global variables in graphical
functions

“hisl 0062: Global variables in graphical
functions” (Simulink)

3-67

3 Checking Systems Interactively

3-68

High Integrity System Model Check

Applicable High-Integrity System
Modeling Guidelines

Check for length of user-defined object
names

“hisl 0063: Length of user-defined object
names to improve MISRA C:2012
compliance” (Simulink)

Check usage of Merge blocks

“hisl 0015: Usage of Merge blocks”
(Simulink)

Check usage of conditionally executed
subsystems

“hisl 0012: Usage of conditionally executed
subsystems” (Simulink)

Check usage of standardized MATLAB
function headers

“himl 0001: Usage of standardized
MATLAB function headers” (Simulink)

Check usage of relational operators in
MATLAB Function blocks

“himl 0008: MATLAB code relational
operator data types” (Simulink)

Check usage of equality operators in
MATLAB Function blocks

“himl 0009: MATLAB code with equal / not
equal relational operators” (Simulink)

Check usage of logical operators and
functions in MATLAB Function blocks

“himl 0010: MATLAB code with logical
operators and functions” (Simulink)

Check type and size of conditional
expressions

“himl 0011: Data type and size of condition
expressions” (Simulink)

Check naming of ports in Stateflow charts

“hisf 0016: Stateflow port names”
(Simulink)

Check scoping of Stateflow data objects

“hisf 0017: Stateflow data object scoping”
(Simulink)

Check usage of Gain blocks

“hisl 0066: Usage of Gain blocks”
(Simulink)

Check usage of bitwise operations in
Stateflow charts

“hisf 0003: Usage of bitwise operations”
(Simulink)

Check data type of loop control variables

“hisl 0102: Data type of loop control
variables to improve MISRA C:2012
compliance” (Simulink)

Check configuration parameters for MISRA
C:2012

“hisl 0060: Configuration parameters that
improve MISRA C:2012 compliance”
(Simulink)

Model Checks for High Integrity Systems Modeling

High Integrity System Model Check

Applicable High-Integrity System
Modeling Guidelines

Check for blocks not recommended for C/C
++ production code deployment

Check for blocks not recommended for
MISRA C:2012

“hisl 0020: Blocks not recommended for
MISRA C:2012 compliance” (Simulink)

Check safety-related optimization settings
for specified minimum and maximum values

“hisl 0056: Configuration Parameters >
Code Generation > Optimization >
Optimize using the specified minimum and
maximum values” (Simulink)

3-69

3 Checking Systems Interactively

Model Checks for IEC 61508, IEC 62304, ISO 26262, and
EN 50128 Standard Compliance

3-70

You can check that your model or subsystem complies with selected aspects of the
following safety standards by running the Model Advisor:

» IEC 61508-3 Functional safety of electrical/electronic/programmable electronic safety-
related systems - Part 3: Software requirements
+ [EC 62304 Medical device software - Software life cycle processes

» IS0 26262-6 Road vehicles - Functional safety - Part 6: Product development: Software
level

* EN 50128 Railway applications - Communications, signalling and processing systems -
Software for railway control and protection systems

To check compliance with these standards, open the Model Advisor on page 3-5 and run
the checks in these folders.

* By Task > Modeling Standards for IEC 61508

* By Task > Modeling Standards for IEC 62304

* By Task > Modeling Standards for ISO 26262

* By Task > Modeling Standards for EN 50128

The table lists the IEC 61508, IEC 62304, ISO 26262, and EN 50128 checks.

IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks

Display configuration management data

Display model metrics and complexity report

Check for unconnected objects

Display bug reports for Embedded Coder

Display bug reports for IEC Certification Kit

Display bug reports for Polyspace Code Prover

Display bug reports for Polyspace Code Prover Server

Display bug reports for Polyspace Bug Finder

Display bug reports for Polyspace Bug Finder Server

Model Checks for IEC 61508, IEC 62304, ISO 26262, and EN 50128 Standard Compliance

IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks
Display bug reports for Simulink Design Verifier

Display bug reports for Simulink PLC Coder

Display bug reports for Simulink Check

Display bug reports for Simulink Coverage

Display bug reports for Simulink Test

Display bug reports for Simulink Requirements
Display bug reports for AUTOSAR Blockset

Following are the High-Integrity System Modeling checks that are applicable for the IEC
61508, IEC 62304, ISO 26262, and EN 50128 standards.

Model Checks for High Integrity Systems Modeling

You can check that your model or subsystem complies with selected aspects of the High
Integrity System Model safety standard by running the Model Advisor.

To check compliance with High Integrity System Model standards, run the high-integrity
checks from these Model Advisor folders:

* By Task > Modeling Standards for DO-178C/D0O-331 > High-Integrity Systems
* By Task > Modeling Standards for IEC 61508 > High-Integrity Systems

* By Task > Modeling Standards for IEC 62304 > High-Integrity Systems

* By Task > Modeling Standards for EN 50128 > High-Integrity Systems

* By Task > Modeling Standards for ISO 26262 > High-Integrity Systems

For information on the High Integrity System Model Software Considerations in Airborne

Systems and Equipment Certification and related standards, see Radio Technical
Commission for Aeronautics (RTCA).

The table lists the High Integrity System Model checks and their corresponding modeling
guidelines. For more information about the High-Integrity Modeling Guidelines, see
“High-Integrity System Modeling” (Simulink).

3-71

https://www.rtca.org/
https://www.rtca.org/

3 Checking Systems Interactively

3-72

High Integrity Systems Modeling Checks

High Integrity System Model Check

Applicable High-Integrity System
Modeling Guidelines

Check usage of lookup table blocks

“hisl 0033: Usage of Lookup Table blocks”
(Simulink)

Check for inconsistent vector indexing
methods

“hisl 0021: Consistent vector indexing
method” (Simulink)

Check for variant blocks with 'Generate
preprocessor conditionals' active

“hisl 0023: Verification of model and
subsystem variants” (Simulink)

Check for root Inports with missing
properties

“hisl 0024: Inport interface definition”
(Simulink)

Check for Relational Operator blocks that
equate floating-point types

“hisl 0017: Usage of blocks that compute
relational operators (2)” (Simulink)

Check usage of Relational Operator blocks

“hisl 0016: Usage of blocks that compute
relational operators” (Simulink)

Check usage of Logical Operator blocks

“hisl 0018: Usage of Logical Operator
block” (Simulink)

Check usage of While Iterator blocks

“hisl 0006: Usage of While Iterator blocks”
(Simulink)

Check sample time-dependent blocks

“hisl 0007: Usage of For Iterator or While
Iterator subsystems” (Simulink)

Check usage of For Iterator blocks

“hisl 0008: Usage of For Iterator Blocks”
(Simulink)

Check usage of If blocks and If Action
Subsystem blocks

“hisl 0010: Usage of If blocks and If Action
Subsystem blocks” (Simulink)

Check usage Switch Case blocks and
Switch Case Action Subsystem blocks

“hisl 0011: Usage of Switch Case blocks
and Action Subsystem blocks” (Simulink)

Check safety-related optimization settings
for logic signals

“hisl 0045: Configuration Parameters >
Math and Data Types > Implement logic
signals as Boolean data (vs. double)”
(Simulink)

Model Checks for IEC 61508, IEC 62304, ISO 26262, and EN 50128 Standard Compliance

High Integrity System Model Check

Applicable High-Integrity System
Modeling Guidelines

Check safety-related block reduction
optimization settings

“hisl 0046: Configuration Parameters >
Simulation Target > Block reduction”
(Simulink)

Check safety-related optimization settings
for application lifespan

“hisl 0048: Configuration Parameters >
Math and Data Types > Application lifespan
(days)” (Simulink)

Check safety-related optimization settings
for data initialization

“hisl 0052: Configuration Parameters >
Code Generation > Optimization > Data
initialization” (Simulink)

Check safety-related optimization settings
for data type conversions

“hisl 0053: Configuration Parameters >
Code Generation > Optimization > Remove
code from floating-point to integer
conversions that wraps out-of-range values”
(Simulink)

Check safety-related optimization settings
for division arithmetic exceptions

“hisl 0054: Configuration Parameters >
Code Generation > Optimization > Remove
code that protects against division
arithmetic exceptions” (Simulink)

Check safety-related code generation
settings for comments

“hisl 0038: Configuration Parameters >
Code Generation > Comments” (Simulink)

Check safety-related code generation
interface settings

“hisl 0039: Configuration Parameters >
Code Generation > Interface” (Simulink)

Check safety-related code generation
settings for code style

“hisl 0047: Configuration Parameters >
Code Generation > Code Style” (Simulink)

Check safety-related code generation
identifier settings

“hisl 0049: Configuration Parameters >
Code Generation > Identifiers” (Simulink)

Check usage of Abs blocks

“hisl 0001: Usage of Abs block” (Simulink)

Check usage of Math Function blocks (rem
and reciprocal functions)

“hisl 0002: Usage of Math Function blocks
(rem and reciprocal)” (Simulink)

Check usage of Math Function blocks (log
and log10 functions)

“hisl 0004: Usage of Math Function blocks
(natural logarithm and base 10 logarithm)”
(Simulink)

3-73

3 Checking Systems Interactively

3-74

High Integrity System Model Check

Applicable High-Integrity System
Modeling Guidelines

Check usage of Assignment blocks

“hisl 0029: Usage of Assignment blocks”
(Simulink)

Check usage of Signal Routing blocks

“hisl 0034: Usage of Signal Routing blocks”
(Simulink)

Check for root Inports with missing range
definitions

“hisl 0025: Design min/max specification of
input interfaces” (Simulink)

Check for root Outports with missing range
definitions

“hisl 0026: Design min/max specification of
output interfaces” (Simulink)

Check state machine type of Stateflow
charts

“hisf 0001: State Machine Type” (Simulink)

Check Stateflow charts for transition paths
that cross parallel state boundaries

“hisf 0013: Usage of transition paths
(crossing parallel state boundaries)”
(Simulink)

Check Stateflow charts for ordering of
states and transitions

“hisf 0002: User-specified state/transition
execution order” (Simulink)

Check Stateflow debugging options

“hisf 0011: Stateflow debugging settings”
(Simulink)

Check Stateflow charts for uniquely defined
data objects

“hisl 0061: Unique identifiers for clarity”
(Simulink)

Check Stateflow charts for strong data
typing

“hisf 0015: Strong data typing (casting
variables and parameters in expressions)”
(Simulink)

Check usage of shift operations for
Stateflow data

“hisf 0064: Shift operations for Stateflow
data to improve code compliance”
(Simulink)

Check assignment operations in Stateflow
charts

“hisf 0065: Type cast operations in
Stateflow to improve code compliance”
(Simulink)

Check Stateflow charts for unary operators

“hisf 0211: Protect against use of unary
operators in Stateflow Charts to improve
code compliance” (Simulink)

Model Checks for IEC 61508, IEC 62304, ISO 26262, and EN 50128 Standard Compliance

High Integrity System Model Check

Applicable High-Integrity System
Modeling Guidelines

Check for Strong Data Typing with
Simulink I/O

“hisf 0009: Strong data typing (Simulink
and Stateflow boundary)” (Simulink)

Check for MATLAB Function interfaces with
inherited properties

“himl 0002: Strong data typing at MATLAB
function boundaries” (Simulink)

Check MATLAB Function metrics

“himl 0003: Limitation of MATLAB function
complexity” (Simulink)

Check MATLAB Code Analyzer messages

“himl 0004: MATLAB Code Analyzer
recommendations for code generation”
(Simulink)

Check safety-related model referencing
settings

“hisl 0037: Configuration Parameters >
Model Referencing” (Simulink)

Check safety-related diagnostic settings for
solvers

“hisl 0043: Configuration Parameters >
Diagnostics > Solver” (Simulink)

Check safety-related solver settings for
simulation time

“hisl 0040: Configuration Parameters >
Solver > Simulation time” (Simulink)

Check safety-related solver settings for
solver options

“hisl 0041: Configuration Parameters >
Solver > Solver options” (Simulink)

Check safety-related solver settings for
tasking and sample-time

“hisl 0042: Configuration Parameters >
Solver > Tasking and sample time options”
(Simulink)

Check safety-related diagnostic settings for
sample time

“hisl 0044: Configuration Parameters >
Diagnostics > Sample Time” (Simulink)

Check safety-related diagnostic settings for
parameters

“hisl 0302: Configuration Parameters >
Diagnostics > Data Validity > Parameters”
(Simulink)

Check safety-related diagnostic settings for
data used for debugging

“hisl 0305: Configuration Parameters >
Diagnostics > Data Validity > Debugging”
(Simulink)

Check safety-related diagnostic settings for
data store memory

“hisl 0013: Usage of data store blocks”
(Simulink)

Check safety-related diagnostic settings for
type conversions

“hisl 0309: Configuration Parameters >
Diagnostics > Type Conversion” (Simulink)

3-75

3 Checking Systems Interactively

3-76

High Integrity System Model Check

Applicable High-Integrity System
Modeling Guidelines

Check safety-related diagnostic settings for
signal connectivity

“hisl 0306: Configuration Parameters >
Diagnostics > Connectivity > Signals”
(Simulink)

Check safety-related diagnostic settings for
bus connectivity

“hisl 0307: Configuration Parameters >
Diagnostics > Connectivity > Buses”
(Simulink)

Check safety-related diagnostic settings
that apply to function-call connectivity

“hisl 0308: Configuration Parameters >
Diagnostics > Connectivity > Function
calls” (Simulink)

Check safety-related diagnostic settings for
compatibility

“hisl 0301: Configuration Parameters >
Diagnostics > Compatibility” (Simulink)

Check safety-related diagnostic settings for
model initialization

“hisl 0304: Configuration Parameters >
Diagnostics > Data Validity > Model
initialization” (Simulink)

Check safety-related diagnostic settings for
model referencing

“hisl 0310: Configuration Parameters >
Diagnostics > Model Referencing”
(Simulink)

Check safety-related diagnostic settings for
saving

“hisl 0036: Configuration Parameters >
Diagnostics > Saving” (Simulink)

Check safety-related diagnostic settings for
Merge blocks

“hisl 0303: Configuration Parameters >
Diagnostics > Data Validity > Merge
blocks” (Simulink)

Check safety-related diagnostic settings for
Stateflow

“hisl 0311: Configuration Parameters >
Diagnostics > Stateflow” (Simulink)

Check safety-related optimization settings
for Loop unrolling threshold

“hisl 0051: Configuration Parameters >
Code Generation > Optimization > Loop
unrolling threshold” (Simulink)

Check model object names

“hisl 0032: Model object names” (Simulink)

Check for model elements that do not link
to requirements

“hisl 0070: Placement of requirement links
in a model” (Simulink)

Check for inappropriate use of transition
paths

“hisf 0014: Usage of transition paths
(passing through states)” (Simulink)

Model Checks for IEC 61508, IEC 62304, ISO 26262, and EN 50128 Standard Compliance

High Integrity System Model Check

Applicable High-Integrity System
Modeling Guidelines

Check usage of Bitwise Operator block

“hisl 0019: Usage of bitwise operations”
(Simulink)

Check data types for blocks with index
signals

“hisl 0022: Data type selection for index
signals” (Simulink)

Check model file name

“hisl 0031: Model file names” (Simulink)

Check if/elseif/else patterns in MATLAB
Function blocks

“himl 0006: MATLAB code if / elseif / else
patterns” (Simulink)

Check switch statements in MATLAB
Function blocks

“himl 0007: MATLAB code switch / case /
otherwise patterns” (Simulink)

Check global variables in graphical
functions

“hisl 0062: Global variables in graphical
functions” (Simulink)

Check for length of user-defined object
names

“hisl 0063: Length of user-defined object
names to improve MISRA C:2012
compliance” (Simulink)

Check usage of Merge blocks

“hisl 0015: Usage of Merge blocks”
(Simulink)

Check usage of conditionally executed
subsystems

“hisl 0012: Usage of conditionally executed
subsystems” (Simulink)

Check usage of standardized MATLAB
function headers

“himl 0001: Usage of standardized
MATLAB function headers” (Simulink)

Check usage of relational operators in
MATLAB Function blocks

“himl 0008: MATLAB code relational
operator data types” (Simulink)

Check usage of equality operators in
MATLAB Function blocks

“himl 0009: MATLAB code with equal / not
equal relational operators” (Simulink)

Check usage of logical operators and
functions in MATLAB Function blocks

“himl 0010: MATLAB code with logical
operators and functions” (Simulink)

Check type and size of conditional
expressions

“himl 0011: Data type and size of condition
expressions” (Simulink)

Check naming of ports in Stateflow charts

“hisf 0016: Stateflow port names”
(Simulink)

3-77

3 Checking Systems Interactively

3-78

High Integrity System Model Check

Applicable High-Integrity System
Modeling Guidelines

Check scoping of Stateflow data objects

“hisf 0017: Stateflow data object scoping”
(Simulink)

Check usage of Gain blocks

“hisl 0066: Usage of Gain blocks”
(Simulink)

Check usage of bitwise operations in
Stateflow charts

“hisf 0003: Usage of bitwise operations”
(Simulink)

Check data type of loop control variables

“hisl 0102: Data type of loop control
variables to improve MISRA C:2012
compliance” (Simulink)

Check configuration parameters for MISRA
C:2012

“hisl 0060: Configuration parameters that
improve MISRA C:2012 compliance”
(Simulink)

Check for blocks not recommended for C/C
++ production code deployment

Check for blocks not recommended for
MISRA C:2012

“hisl 0020: Blocks not recommended for
MISRA C:2012 compliance” (Simulink)

Check safety-related optimization settings
for specified minimum and maximum values

“hisl 0056: Configuration Parameters >
Code Generation > Optimization >
Optimize using the specified minimum and
maximum values” (Simulink)

See Also

Related Examples

. “Run Model Advisor Checks and Review Results” on page 3-5

Model Checks for MathWorks Automotive Advisory Board (MAAB) Guideline Compliance

Model Checks for MathWorks Automotive Advisory

Board (MAAB) Guideline Compliance

You can check that your model or subsystem complies with MathWorks Automotive
Advisory Board (MAAB) Guidelines by running the Model Advisor. Navigate to By Task >

Modeling Standards for MAAB and run the checks.

The MAAB involves major automotive OEMs and suppliers in the process of evolving
MathWorks controls, simulation, and code generation products, including Simulink,

Stateflow, and Simulink Coder. An important result of this collaboration has been the
MAAB Control Algorithm Modeling Guidelines.

The table lists the MAAB checks with the applicable MAAB Control Algorithm Modeling
guideline. For JMAAB checks, see “Model Checks for Japan MATLAB Automotive Advisory

Board (JMAAB) Guideline Compliance” on page 3-85.

By Task > Model Advisor Check Guideline from the MAAB
Modeling Control Algorithm Modeling
Standards for Guidelines, Version 3.0
MAAB
subfolder
Naming Check file names ar 0001: Filenames
Conventions cpock folder names ar 0002: Directory names
Check subsystem names jc 0201: Usable characters for
Subsystem names
Check port block names jc 0211: Usable characters for
Inport blocks and Outport blocks
Check character usage in signal |jc_0221: Usable characters for
labels signal line names
Check character usage in block jc_0231: Usable characters for
names block names
Check Simulink bus signal names |na 0030: Usable characters for
Simulink Bus names
Model Check for mixing basic blocks and |db 0143: Similar block types on
Architecture |subsystems the model levels

3-79

https://www.mathworks.com/solutions/automotive/standards/maab.html

3 Checking Systems Interactively

3-80

By Task > Model Advisor Check Guideline from the MAAB
Modeling Control Algorithm Modeling
Standards for Guidelines, Version 3.0
MAAB
subfolder
Check unused ports in Variant na 0020: Number of inputs to
Subsystems variant subsystems
Check use of default variants na 0036: Default variant
Check use of single variable na 0037: Use of single variable
variant conditionals variant conditionals
Model Check Implement logic signals as [jc 0011: Optimization parameters
Configuration |Boolean data (vs. double) for Boolean data types
Options Check model diagnostic jc 0021: Model diagnostic settings
parameters
Simulink Check for Simulink diagrams using |na_0004: Simulink model

nonstandard display attributes

appearance

Check font formatting

db 0043: Simulink font and font
size

Check positioning and
configuration of ports

db 0042: Port block in Simulink
models

Check visibility of block port
names

na_0005: Port block name visibility
in Simulink models

Check display for port blocks

jc_0081: Icon display for Port
block

Check whether block names
appear below blocks

db 0142: Position of block names

Check the display attributes of
block names

jc_0061: Display of block names

Check position of Trigger and
Enable blocks

db 0146: Triggered, enabled,
conditional Subsystems

Check for nondefault block
attributes

db 0140: Display of basic block
parameters

Check for matching port and
signal names

jm_0010: Port block names in
Simulink models

Model Checks for MathWorks Automotive Advisory Board (MAAB) Guideline Compliance

By Task >
Modeling
Standards for
MAAB
subfolder

Model Advisor Check

Guideline from the MAAB
Control Algorithm Modeling
Guidelines, Version 3.0

Check Trigger and Enable block
names

jc 0281: Naming of Trigger Port
block and Enable Port block

Check signal line labels

na 0008: Display of labels on
signals

Check for propagated signal labels

na_0009: Entry versus propagation
of signal labels

Check for unconnected ports and
signal lines

db 0081: Unconnected signals,
block inputs and block outputs

Check for prohibited blocks in
discrete controllers

jm_0001: Prohibited Simulink
standard blocks inside controllers

Check for prohibited sink blocks

hd 0001: Prohibited Simulink
sinks

Check scope of From and Goto
blocks

na 0011: Scope of Goto and From
blocks

Check usage of Switch blocks

jc 0141: Use of the Switch block

Check usage of Relational
Operator blocks

jc 0131: Use of Relational
Operator block

Check for indexing in blocks

db 0112: Indexing

Check usage of buses and Mux
blocks

na 0010: Grouping data flows into
signals

Check usage of tunable
parameters in blocks

db 0110: Tunable parameters in
basic blocks

Check orientation of Subsystem
blocks

jc 0111: Direction of Subsystem

Check fundamental logical and
numerical operations

na 0002: Appropriate
implementation of fundamental
logical and numerical operations

Check usage of merge blocks

na 0032: Use of merge blocks

3-81

3 Checking Systems Interactively

3-82

By Task > Model Advisor Check Guideline from the MAAB
Modeling Control Algorithm Modeling
Standards for Guidelines, Version 3.0
MAAB
subfolder
Check logical expressions in 'If' na 0003: Simple logical
blocks expressions in If Condition block
Check Simulink signal appearance |db 0032: Simulink signal
appearancedb 0032: Simulink
signal appearance
Check usage of enumerated values [na 0031: Definition of default
enumerated valuena 0031:
Definition of default enumerated
value
Check usage of Goto and From jc_0171: Maintaining signal flow
blocks between Subsystems when using Goto and From blocks
Check usage of non-compliant na 0027: Use of only standard
blocks library blocks
Stateflow Check usage of exclusive and db 0137: States in state machines

default states in state machines

Check transition orientations in
flow charts

db 0132: Transitions in flow
charts

Check entry formatting in State
blocks in Stateflow charts

jc_0501: Format of entries in a
State block

Check return value assignments in
Stateflow graphical functions

jc 0511: Setting the return value
from a graphical function

Check default transition placement
in Stateflow charts

jc 0531: Placement of the default
transition

Check for Strong Data Typing with
Simulink I/O

db 0122: Stateflow and Simulink
interface signals and parameters

Check Stateflow data objects with
local scope

db 0125: Scope of internal signals
and local auxiliary variables

Check usage of return values from
Stateflow graphical functions

jc 0521: Use of the return value
from graphical functions

Model Checks for MathWorks Automotive Advisory Board (MAAB) Guideline Compliance

By Task >
Modeling
Standards for
MAAB
subfolder

Model Advisor Check

Guideline from the MAAB
Control Algorithm Modeling
Guidelines, Version 3.0

Check for MATLAB expressions in
Stateflow charts

db 0127: MATLAB commands in
Stateflow

Check for pointers in Stateflow
charts

jm_0011: Pointers in Stateflow

Check for event broadcasts in
Stateflow charts

jm_0012: Event broadcasts

Check transition actions in
Stateflow charts

db 0151: State machine patterns
for transition actions

Check for bitwise operations in
Stateflow charts

na 0001: Bitwise Stateflow
operators

Check usage of unary minus
operations in Stateflow charts

jc 0451: Use of unary minus on
unsigned integers in Stateflow

Check for comparison operations
in Stateflow charts

na 0013: Comparison operation in
Stateflow

Check usage of floating-point
expressions in Stateflow charts

jc_0481: Use of hard equality
comparisons for floating point
numbers in Stateflow

Check for names of Stateflow ports
and associated signals

db 0123: Stateflow port names

Check nested states in Stateflow
charts

na 0038: Levels in Stateflow
charts

Check use of Simulink in Stateflow
charts

na 0039: Use of Simulink in
Stateflow charts

Check number of Stateflow states
per container

na 0040: Number of states per
container

Check for Stateflow transition
appearance

db 0129: Stateflow transition
appearance

Check reuse of Variables within a
Stateflow scope

jc_0491: Reuse of variables within
a single Stateflow scope

3-83

3 Checking Systems Interactively

3-84

By Task > Model Advisor Check Guideline from the MAAB
Modeling Control Algorithm Modeling
Standards for Guidelines, Version 3.0

MAAB

subfolder

MATLAB Check input and output settings of |na_0034: MATLAB Function block

Functions and
Code

MATLAB Functions

input/output settings

Check MATLAB Function metrics

na 0016: Source lines of MATLAB
Functions

na 0018: Number of nested if/else
and case statement

Check MATLAB code for global
variables

na 0024: Global Variables

Check the number of function calls
in MATLAB Function blocks

na 0017: Number of called
function levels

Check usage of restricted variable
names

na 0019: Restricted Variable
Names

Check usage of character vector
inside MATLAB Function block

na 0021: Strings

Check usage of recommended
patterns for Switch/Case
statements

na 0022: Recommended patterns
for Switch/Case statements

See Also

Related Examples
. “Run Model Advisor Checks and Review Results” on page 3-5

Model Checks for Japan MATLAB Automotive Advisory Board (JMAAB) Guideline Compliance

Model Checks for Japan MATLAB Automotive Advisory
Board (JMAAB) Guideline Compliance

You can check that your model or subsystem complies with Japan MATLAB Automotive
Advisory Board (JMAAB) guidelines by running the Model Advisor. Navigate to By Task >
Modeling Standards for JMAAB and run the checks.

The JMAAB involves major automotive OEMs and suppliers in the process of evolving
MathWorks controls, simulation, and code generation products, including Simulink,
Stateflow, and Simulink Coder. An important result of this collaboration has been the
Control Algorithm Modeling Guidelines (JMAAB), Version 5.1.

The table lists the JMAAB checks with the applicable JMAAB Control Algorithm Modeling
guideline.

By Task > Model Advisor Check Guideline
Modeling from the
Standards for JMAAB Control
JMAAB Algorithm
subfolder Modeling
Guidelines,
Version 5.1

Naming Check file names ar 0001:
Conventions Usable
characters for
file names

Check folder names ar 0002:
Usable

characters for
folder names

Check subsystem names jc 0201: Usable
characters for
Subsystem
names

3-85

https://www.mathworks.com/solutions/automotive/standards/maab.html

3 Checking Systems Interactively

3-86

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check

Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 5.1

Check port block names

jc 0211: Usable
characters for
Inport block
and Outport
block

Check character usage in block names

jc 0231: Usable
characters for
block names

Check usable characters for signal names and bus
names

jc 0222: Usable
characters for
signal/bus
names

Check usable characters for parameter names

jc 0232: Usable
characters for
parameter
names

Check length of model file name

jc 0241: Length
restrictions for
model file
names

Check length of folder name at every level of model
path

jc 0242: Length
restrictions for
folder names

Check length of subsystem names

jc 0243: Length
restrictions for
subsystem
names

Model Checks for Japan MATLAB Automotive Advisory Board (JMAAB) Guideline Compliance

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check

Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 5.1

Check length of Inport and Outport names

jc 0244: Length
restrictions for
Inport and
Outport names

Check length of signal and bus names

jc 0245: Length
restrictions for
signal and bus
names

Check length of parameter names

jc 0246: Length
restrictions for
parameter
names

Check length of block names

jc 0247: Length
restrictions for
block names

Model
Architecture

Check for mixing basic blocks and subsystems

db 0143: Usage
block types in
model
hierarchy

Model
Configuration
Options

Check Implement logic signals as Boolean data (vs.

double)

jc 0011:
Optimization
parameters for
Boolean data

types

Check diagnostic settings for incorrect calculation
results

jc_0806:
Detecting
incorrect
calculation
results

3-87

3 Checking Systems Interactively

3-88

By Task > Model Advisor Check Guideline
Modeling from the
Standards for JMAAB Control
JMAAB Algorithm
subfolder Modeling
Guidelines,
Version 5.1
Simulink Check for Simulink diagrams using nonstandard na 0004:
display attributes Simulink model
appearance
settings

Check font formatting

db 0043: Model
font and font
size

Check positioning and configuration of ports

db 0042: Usage
of Inport and
Outport blocks

Check whether block names appear below blocks

db 0142:
Position of
block names

Check the display attributes of block names

jc 0061:
Display of block
names

Check position of Trigger and Enable blocks

db 0146: Block
layout in
conditional
subsystems

Check for nondefault block attributes

db 0140:
Display of block
parameters

Check trigger signal names

jc 0281:
Trigger signal
names

Check for unconnected ports and signal lines

db 0081:
Unconnected
signals / block

Model Checks for Japan MATLAB Automotive Advisory Board (JMAAB) Guideline Compliance

By Task > Model Advisor Check Guideline

Modeling from the

Standards for JMAAB Control

JMAAB Algorithm

subfolder Modeling
Guidelines,
Version 5.1

Check usage of Switch blocks jc_0141: Use of

the Switch
block

Check usage of Relational Operator blocks

jc_0131: Usage
of Relational
Operators

Check for indexing in blocks

db 0112: Usage
of index

Check usage of tunable parameters in blocks

db 0110:
Guidelines for
block
parameters

Check signal line labels

jc 0008:
Definition of
Signal labels

Check for propagated signal labels

jc_0009: Signal
name
propagation

Check usage of Discrete-Time Integrator block

jc 0627:
Guideline for
using the
Discrete-Time
Integrator
block

Check settings for data ports in Multiport Switch
blocks

jc_0630: Usage
of Multiport
Switch block

Check usage of fixed-point data type with non-zero
bias

jc_0643: Fixed-
point setting

3-89

3 Checking Systems Interactively

3-90

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check

Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 5.1

Check input and output datatype for Switch blocks

jc 0650: Block
input/output
data type with
switching
function

Check signs of input signals in product blocks

jc_ 0611: Input
signal for
multiplication
and division
blocks

Check Signed Integer Division Rounding mode

jc 0642:
Integer
rounding mode
setting

Check type setting by data objects

jc 0644:
Guideline for
type setting

Check usage of the Saturation blocks

jc 0628:
Guideline for
using the
Saturation
Block

Check usage of Merge block

jc_0659: Usage
restrictions of
signal lines
inputted to
Merge block

Model Checks for Japan MATLAB Automotive Advisory Board (JMAAB) Guideline Compliance

By Task > Model Advisor Check Guideline
Modeling from the
Standards for JMAAB Control
JMAAB Algorithm
subfolder Modeling
Guidelines,
Version 5.1
Check usage of Memory and Unit Delay blocks jc 0623: Use of
continuous-time
delay blocks

and discrete-
time blocks

Check block orientation jc 0110:
Direction of
block

Check if blocks are shaded in the model jc_0604: Block
shading

Check operator order of Product blocks jc 0610:
Operator order
for
multiplication
and division
blocks

Check icon shape of Logical Operator blocks jc 0621:
Guideline for
using the
Logical
Operator block

Check if tunable block parameters are defined as jc 0645:
named constants Parameter
definition for
calibration

Check default/else case in Switch Case blocks and If |jc_0656: Usage
blocks of Conditional
Control block

3-91

3 Checking Systems Interactively

3-92

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check

Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 5.1

Check usage of Lookup Tables

jc 0626:
Guideline for
using the
Lookup Table
block

Check for parentheses in Fcn block expressions

jc 0622:
Guideline for
using the Fcn
block

Check undefined initial output for conditional
subsystems

jc_0640: Initial
value settings
for Outport
blocks in
conditional
subsystems

Check for avoiding algebraic loops between
subsystems

jc_0653: Delay
block layout in
feedback loops

Comparing floating point types in Simulink

jc_0800:
Comparing
floating-point
types in
Simulink

Check duplication of Simulink data names

jc 0791:
Duplicate
definition data
names

Check unused data in Simulink Model

jc 0792:
Unused data

Model Checks for Japan MATLAB Automotive Advisory Board (JMAAB) Guideline Compliance

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check

Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 5.1

Check output data type of operation blocks

jc_ 0651:
Guideline for
implementing a
type conversion

Check Model Description

jc 0603: Model
description

Check for consistency in model element names

jc 0602:
Consistency in
model element
names

Check for sample time setting

jc 0641:
Sample time
setting

Stateflow

Check transition orientations in flow charts

db 0132:
Transitions in
Flow Charts

Check return value assignments in Stateflow
graphical functions

jc 0511:
Setting the
return value
from a
graphical
function

Check default transition placement in Stateflow
charts

jc 0531:
Default
transition

3-93

3 Checking Systems Interactively

3-94

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check

Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 5.1

Check for Strong Data Typing with Simulink I/O

db 0122:
Stateflow and
Simulink
interface
signals and
parameters

Check Stateflow data objects with local scope

db 0125:
Stateflow local
data

Check for MATLAB expressions in Stateflow charts

db 0127:
Limitation on
MATLAB
commands in
Stateflow
blocks

Check for pointers in Stateflow charts

jm 0011:
Pointers in
Stateflow

Check for event broadcasts in Stateflow charts

jm 0012: Usage
restrictions of
events and
broadcasting
events

Check for bitwise operations in Stateflow charts

na 0001:
Standard usage
of Stateflow
operators

Model Checks for Japan MATLAB Automotive Advisory Board (JMAAB) Guideline Compliance

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check

Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 5.1

Check for unary minus operations on unsigned
integers in Stateflow charts

jc 0451: Use of
unary minus on
unsigned
integers

Check usage of Stateflow comments

jc_0738: Usage
of Stateflow
comments

Check prohibited comparison operation of logical
type signals

jc 0655:
Prohibition of
logical value
comparison in
Stateflow

Check usage of internal transitions in Stateflow states

jc 0763: Usage
of multiple
internal
transitions

Check usage of transition conditions in Stateflow
transitions

jc 0772:
Execution order
and transition
conditions of
transition lines

Check uniqueness of Stateflow State and Data names

jc 0732:
Distinction
between state
names, data
names, and
event names

3-95

3 Checking Systems Interactively

3-96

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check

Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 5.1

Check uniqueness of State names

jc 0730:
Unique state
name in
Stateflow
blocks

Check usage of parentheses in Stateflow transitions

jc_0752: Format
of condition
action in
transition label

Check prohibited combination of state action and flow
chart

jc 0762:
Prohibited of
state action and
flow chart
combination

Check condition actions and transition actions in
Stateflow

jc 0753:
Condition
actions and
transition
actions in
Stateflow

Check usable number for first index

jc 0701: Usable
number for first
index

Check usage of State names

jc_ 0731: State
name format

Check execution timing for default transition path

jc 0712:
Execution
timing for
default
transition path

Model Checks for Japan MATLAB Automotive Advisory Board (JMAAB) Guideline Compliance

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check

Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 5.1

Check repetition of Action types

jc 0734:
Number of
state action

types

Check for unused data in Stateflow Charts

jc 0700:
Unused data in
Stateflow block

Check updates to variables used in state transition
conditions

jc_0741: Timing
to update data
used in state
chart transition
conditions

Check starting point of internal transition in
Stateflow

jc 0760:
Starting point
of internal
transition

Check for parallel Stateflow state used for grouping

jc_0721: Usage
of parallel
states

Check scope of data in parallel states

jc 0722: Local
data definition
in parallel
states

Check indentation of code in Stateflow states

jc 0736:
Uniform
indentations in
Stateflow
blocks

3-97

3 Checking Systems Interactively

3-98

By Task > Model Advisor Check Guideline
Modeling from the
Standards for JMAAB Control
JMAAB Algorithm
subfolder Modeling
Guidelines,
Version 5.1
Check for usage of text inside states jc 0739:

Guidelines for
describing texts
inside states

Check for unexpected backtracking in state
transitions

jc 0751 :
Backtracking
prevention in
state transition

Check for unconnected objects in Stateflow Charts

jc 0797:
Unconnected
transition
lines / states /
connective
junctions

Check placement of Label String in Transitions

jc 0770:
Transition label
layout

Check Stateflow chart action language

jc 0790: Chart
action language

Check usable characters for Stateflow data names

jc 0795: Usable
characters for
Stateflow data
names

Check length of Stateflow data name

jc 0796: Length
restriction for
Stateflow data
names

Model Checks for Japan MATLAB Automotive Advisory Board (JMAAB) Guideline Compliance

By Task > Model Advisor Check Guideline
Modeling from the
Standards for JMAAB Control
JMAAB Algorithm
subfolder Modeling
Guidelines,
Version 5.1
Check usage of transitions to external states jc 0723:
Prohibited

direct transition
from external
state to child
state

Check order of state action types

jc 0733: Order
of state action

types

Check usage of numeric literals in Stateflow

jc 0702: Use of
named
Stateflow
parameters/
constants

Check position of comments in transition labels

jc 0771:
Comment
position in
transition labels

Check terminal junctions in Stateflow

jc 0775:

Terminating
junctions in
Flow Charts

Check for implicit type casting in Stateflow

jc 0802:
Prohibited use
of implicit type
casting in
Stateflow

3-99

3 Checking Systems Interactively

3-100

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check

Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 5.1

Check if state action type 'exit' is used in the model

jc 0740:
Limitation on
use of exit state
action

Check for use of C-style comment symbols

jc 0801:
Prohibited use
of the /* and */
comment
symbols

Check usage of unconditional transitions in flow
charts

jc 0773:
Unconditional
transition of a
flow chart

Check for comments in unconditional transitions

jc 0774:
Comments for
through
transition

MATLAB
Functions

Check input and output settings of MATLAB
Functions

na 0034:
MATLAB
Function block
input/output
settings

Check MATLAB code for global variables

na 0024:
Shared data in
MATLAB
functions

See Also

See Also

Related Examples
. “Run Model Advisor Checks and Review Results” on page 3-5

3-101

3 Checking Systems Interactively

Model Checks for MISRA C:2012 Compliance

To check that your model or subsystem has a likelihood of generating MISRA C:2012
compliant code, open the Model Advisor on page 3-5 and run the checks in By Task >
Modeling Guidelines for MISRA C:2012:

3-102

Check usage of Assignment blocks

Check for blocks not recommended for MISRA C:2012

Check for unsupported block names

Check configuration parameters for MISRA C:2012

Check for equality and inequality operations on floating-point values
Check for bitwise operations on signed integers

Check for recursive function calls

Check for switch case expressions without a default case

Check for blocks not recommended for C/C++ production code deployment
Check for missing error ports for AUTOSAR receiver interfaces
Check for missing const qualifiers in model functions

Check integer word length

Check bus object names that are used as bus element names

See Also

Related Examples

“Run Model Advisor Checks and Review Results” on page 3-5

Model Checks for Secure Coding (CERT C, CWE, and ISO/IEC TS 17961 Standards)

Model Checks for Secure Coding (CERT C, CWE, and
ISO/IEC TS 17961 Standards)

To check that your code complies with the CERT C, CWE, and ISO/IEC TS 17961
(Embedded Coder) secure coding standards, open the Model Advisor on page 3-5 and run
the checks in By Task > Modeling Guidelines for Secure Coding (CERT C, CWE,
ISO/IEC TS 17961):

Check configuration parameters for secure coding standards

Check for blocks not recommended for C/C++ production code deployment
Check for blocks not recommended for secure coding standards
Check usage of Assignment blocks

Check for switch case expressions without a default case

Check for bitwise operations on signed integers

Check for equality and inequality operations on floating-point values
Check integer word length

Detect Dead Logic

Detect Integer Overflow

Detect Division by Zero

Detect Out Of Bound Array Access

Detect Violation of Specified Minimum and Maximum Values

See Also

Related Examples

“Run Model Advisor Checks and Review Results” on page 3-5

3-103

3 Checking Systems Interactively

Model Checks for Requirements Links

3-104

To check that every requirements link in your model has a valid target in a requirements
document, from the Simulink Toolstrip, open the Requirements app. Click Check
Consistency to run the Requirements Consistency Checking checks in the Model Advisor.

In the Model Advisor, the requirements consistency checks are available in:

* By Product > Simulink Requirements > Requirements Consistency
* By Task > Requirements Consistency Checking

For more information about these Model Advisor checks, see “Requirements Consistency
Checks” (Simulink Requirements)

When modeling for high-integrity systems, to check that model elements link to
requirement documents, run Check for model elements that do not link to requirements.

See Also

Related Examples

. “Validate Requirements Links in a Model” (Simulink Requirements)
. “Run Model Advisor Checks and Review Results” on page 3-5

. “High-Integrity System Modeling” (Simulink)

Generate Model Advisor Reports

Generate Model Advisor Reports

By default, when the Model Advisor runs checks, it generates an HTML report of check
results in the slprj/modeladvisor/model name folder. On Windows® platforms, you
can generate Model Advisor reports in HTML, Adobe® PDF, and Microsoft Word .docx
formats.

The beginning of the Model Advisor reports contain the:

* Model name

* Simulink version

* System

* Treat as Referenced Model
* Model version

* Current run

Generate Results Report When Executing Model Advisor
Checks

Use these steps to generate a Model Advisor report when executing the checks. This
report is in HTML format.
In the left pane of the Model Advisor, select the checks you want to run.

Click on the folder that contains the checks and, in the right pane of the Model
Advisor, select Show report after run.

3 Click Run Selected Checks. When complete, the Model Advisor automatically opens
an HTML version of the report.

4 To save, right-click on the report and select Save As

Generate Results Report After Executing Model Advisor
Checks

To generate a Model Advisor report in Adobe PDF or Microsoft Word:

1 In the left pane of the Model Advisor, select the checks you want to run. Click on the
folder that contains the checks and, in the right pane of the Model Advisor, select
Run Selected Checks.

3-105

3 Checking Systems Interactively

3-106

2 When complete, reselect the folder and click Generate Report in the right pane of
the Model Advisor.

3 In the Generate Model Advisor Report dialog box:

* Enter the path to the folder where you want to generate the report.

* Provide a file name.
* Use File format to select HTML, PDF, or Word.

4 Click OK. The Model Advisor generates the report and saves it to the designated
location. If you selected View report after generation, the report opens

automatically.

Modify Template for Model Advisor Check Results Report

If you have a MATLAB Report Generator license, you can modify the default template that
the Model Advisor uses to generate the report in PDF or Microsoft Word.

The default template contains fields that the Model Advisor uses to populate the
generated report with information about the analysis. If you want your Model Advisor
report to contain the analysis information, do not delete the fields. When the Model
Advisor generate the report, analysis information overrides the text that you enter in the

template field.

Template Field In generated report, displays
ModelName Model name

SimulinkVersion |Simulink version

SystemName System name

TreatAsMd1lRef Whether or not model is treated as a referenced model
ModelVersion Model version

CurrentRun Model Advisor analysis time stamp
PassCount Number of checks that pass
FailCount Number of checks that fail
WarningCount Number of checks that cause a warning
NrunCount Number of checks that did not run
TotalCount Total number of checks

Generate Model Advisor Reports

Template Field In generated report, displays

CheckResults Results for each check

This example shows how to add a header to a PDF version of a Model Advisor report.

1

4
5

Using Microsoft Word, open the default template matlabroot/toolbox/
simulink/simulink/modeladvisor/resources/templates/default.dotx.

Rename and save the template default.dotx to a writable location. For example,
save template default.dotx to C: /work/ma_format/mytemplate.dotx.

In the template C: /work/ma_format/mytemplate.dotx file, add a header. For
example, in the template header, add the text My Custom Header. Save the
template as a Microsoft Word .dotx file.

My Custom Header

Model Advisor Report — Vlodel name

Simulink version: Simulink varsion Model version: Model version
System: Systerm name Current run: Timestamp

Treat as Referenced Model: If it's treat as referenced model

Run Summary

Pass Fail Warning Mot Run Total
Passed Failed Warning Mot run Total
@ check 9 check & check = check numkber

Rezults of all checks

In the Model Advisor window Report pane, click Generate Report.
In the Generate Model Advisor Report dialog box:

* Enter the path to the folder where you want to generate the report and provide a
file name.
* Set File format to PDF.

» Select View report after generation.

3-107

3 Checking Systems Interactively

* Set Report template to C:\work\ma_ format\mytemplate.dotx.

6 Click OK. The Model Advisor generates the report in PDF format with the custom
header.

My Custom Header

Model Advisor Report —sldemo_mdladv

Simulink version: 8.5 Model version: 1.78

System: sldemo_mdladv Current run: 13-Mar-2015 10:27:03
Treat as Referenced Model: off

Run Summary

Pass Fail Warning Not Run Total
9 1 Q o A2] 30 33
See Also

Related Examples

. “Save and View Model Advisor Check Reports” (Simulink)

. “Customize Microsoft Word Component Templates” (MATLAB Report Generator)
. “Run Model Advisor Checks and Review Results” on page 3-5

3-108

Check Systems Programmatically

4 cCheck Systems Programmatically

Checking Systems Programmatically

The Simulink Check product includes a programmable interface for scripting and for
command-line interaction with the Model Advisor. Using this interface, you can:

* Create scripts and functions for distribution that check one or more systems using the
Model Advisor.

* Run the Model Advisor on multiple systems in parallel on multicore machines
(requires a Parallel Computing Toolbox™ license).

* Check one or more systems using the Model Advisor from the command line.

* Archive results for reviewing at a later time.

To define the workflow for running multiple checks on systems:
1 Specify a list of checks to run. Do one of the following:
* Create a Model Advisor configuration file that includes only the checks that you
want to run.
* Create a list of check IDs.
2 Specify a list of systems to check.

3 Run the Model Advisor checks on the list of systems using the ModelAdvisor. run
function.

4 Archive and review the results of the run.

See Also

ModelAdvisor. run

Related Examples

. “Archive and View Results” on page 4-7

More About

. “Organize Checks and Folders Using the Model Advisor Configuration Editor” on
page 8-5

4-2

Create a Function for Checking Multiple Systems

Create a Function for Checking Multiple Systems

You can create a function to programmatically run multiple checks on a model. The
function returns the number of failures and warnings.

In the MATLAB window, select New > Function.

Save the file as run_configuration.m.

In the function, right-click on untitled and select Replace function name by file
name. The function name is updated to run_configuration.

function [outputArgl, outputArg2] = run_configuration(inputArgl,inputArg2)

4 Define the output and input arguments. For the output arguments, press Shift-Enter
after entering each value to automatically update allinlining instances in the function.
* output Arglas fail
* output Arg2aswarn
* inputArgl, inputArg2to SysList

function [fail, warn] = run_configuration(SysList)
fail = inputArgl;
warn = inputArg2;

5 Inside the function, specify the list of checks to run using the example Model Advisor
configuration file:

fileName = 'slvnvdemo mdladv_config.mat';
6 Call the ModelAdvisor. run function:

SysResultObjArray = ModelAdvisor.run(SysList, 'Configuration', fileName);
7 Determine the number of checks that return warnings and failures:

war

for i=1:length(SysResultObjArray)
fail fail + SysResultObjArray{i}.numFail;
warn = warn + SysResultObjArray{i}.numWarn;

The function should now look like this:
function [fail, warn] = run configuration(SysList)
%RUN CONFIGURATION Check systems with Model Advsior

Check systems given as input and return number of warnings and
failures.

o° o°

4-3

4 cCheck Systems Programmatically

4-4

10

fileName = 'slvnvdemo mdladv config.mat';
fail = 0;
warn = 0;

SysResultObjArray = ModelAdvisor.run(SysList, 'Configuration', fileName);

for i=1:length(SysResultObjArray)
fail = fail + SysResultObjArray{i}.numFail;
warn = warn + SysResultObjArray{i}.numWarn;
end
end

Save the function.

Test the function. In the MATLAB Command Window, run run_configuration.mon
the sldemo auto climatecontrol/Heater Control subsystem:

[failures, warnings] = run_configuration(...
'sldemo_auto climatecontrol/Heater Control');

Review the results. Click the Summary Report link to open the Model Advisor
Command-Line Summary report.

See Also

ModelAdvisor. run

Related Examples

“Create a Function for Checking Multiple Systems in Parallel” on page 4-5

Create a Function for Checking Multiple Systems in Parallel

Create a Function for Checking Multiple Systems in
Parallel

Checking multiple systems in parallel reduces the processing time required by the Model
Advisor to check multiple systems. If you have the Parallel Computing Toolbox license,
you can check multiple systems in parallel on a multicore host machine.

The Parallel Computing Toolbox does not support 32-bit Windows machines.

Each parallel process runs checks on one model at a time. In parallel mode, load the
model data from the model workspace or data dictionary. The Model Advisor in parallel
mode does not support model data in the base workspace.

In the MATLAB window, select New > Function.

Save the file as run_fast configuration.m.

In the function, right-click on untitled and select Replace function name by file
name. The function name is updated to run_fast configuration

function [outputArgl, outputArg2] = run_fast configuration(inputArgl,inputArg2)
4 Define the output and input arguments. For the output arguments, press Shift-Enter
after entering each value to automatically update all instances in the function.
* output Arglas fail
* output Arg2aswarn
* inputArgl, inputArg2to SyslList

function [fail, warn] = run_fast configuration(SysList)
fail = inputArgl;
warn = inputArg2;

5 Inside the function, specify the list of checks to run using the example Model Advisor
configuration file:

fileName = 'slvnvdemo _mdladv_config.mat';
6 Call the ModelAdvisor. run function and set 'ParallelMode' to 'On".

SysResultObjArray = ModelAdvisor.run(SysList, 'Configuration', fileName, ...
'ParallelMode','On');

7 Determine the number of checks that return warnings and failures:

fail
warn

0;
0;

4 cCheck Systems Programmatically

4-6

10

11

for i=1:length(SysResultObjArray)
fail = fail + SysResultObjArray{i}.numFail;
warn = warn + SysResultObjArray{i}.numWarn;

The function should now look like this:

function [fail, warn] = run_fast configuration(SysList)

%RUN_FAST CONFIGURATION Check systems in parallel with Model Advisor
% Return number of warnings and failures.

fileName = 'slvnvdemo mdladv config.mat';

fail=0;

warn=0;

SysResultObjArray = ModelAdvisor.run(SysList, 'Configuration', fileName, ...
'ParallelMode', 'On');

for i=1:length(SysResultObjArray)
fail fail + SysResultObjArray{i}.numFail;
warn = warn + SysResultObjArray{i}.numWarn;

end

end

Save the function.

Test the function. In the MATLAB Command Window, create a list of systems:

SysList={'sldemo auto climatecontrol/Heater Control',...
'sldemo_auto climatecontrol/AC Control', 'rtwdemo iec61508'};

Run run_fast configuration on the list of systems:
[failures, warnings] = run_fast configuration(SysList);

Review the results. Click the Summary Report link to open the Model Advisor
Command-Line Summary report.

See Also

ModelAdvisor. run

Related Examples

“Create a Function for Checking Multiple Systems” on page 4-3

Archive and View Results

Archive and View Results

Archive Results

After you run the Model Advisor programmatically, you can archive the results. The
ModelAdvisor. run function returns a cell array of ModelAdvisor.SystemResult
objects, one for each system run. If you save the objects, you can use them to view the
results at a later time without rerunning the Model Advisor.

View Results in Command Window

When you run the Model Advisor programmatically, the system-level results of the run are
displayed in the Command Window. For example:

Systems passed: 0 of 1

Systems with warnings: 1 of 1

Systems failed: 0 of 1
Summary Report

The Summary Report link provides access to the Model Advisor Command-Line Summary
report.

You can review additional results in the Command Window by calling the
DisplayResults parameter when you run the Model Advisor. For example, run the
Model Advisor as follows:

SysResultObjArray = ModelAdvisor.run('sldemo auto climatecontrol/Heater Control',...
'Configuration', 'slvnvdemo mdladv_config.mat', 'DisplayResults', 'Details');

The results displayed in the Command Window are:

Running Model Advisor
Running Model Advisor on sldemo auto climatecontrol/Heater Control

Model Advisor run: 26-Jun-2019 15:01:13
Configuration: slvnvdemo mdladv config.mat
System: sldemo auto climatecontrol/Heater Control
System version: 10

Created by: The MathWorks, Inc.

(1) Warning: Check model diagnostic parameters [check ID: mathworks.maab.jc 0021]

Summary : Pass Warning Fail Not Run

4 cCheck Systems Programmatically

4-8

Systems passed: 0 of 1
Systems with warnings: 1 of 1

Systems failed: 0 of 1
Summary Report

To display the results in the Command Window after loading an object, use the
viewReport function.

View Results in Model Advisor Command-Line Summary
Report

When you run the Model Advisor programmatically, a Summary Report link is displayed in
the Command Window. Clicking this link opens the Model Advisor Command-Line
Summary report. The following graphic is the report that the Model Advisor generates for
run_configuration.

Archive and View Results

-

@& Model Advisor Command-Line Summary Report - C\matlabwork
File Go Desktop

o« e A

Edit View Debug Window Help

Location: | C:/matlabwork/summaryReport.html

Model Advisor Command-Line Summary
Simulink version: 7.7

Configuration file:
C:matlabwork'slvnvdemo_mdladv_config.mat

Run Summary.

Systems passed 0 of1
Systemns with warnings 1of1
Systems failed 0 of1

(== =]

Current run: 09-Febh-2011
15:29:49

Number of systems: 1

Systems Run
E=] Model Advi
System @rassed @Failed | BwWarnings Rﬂzt 2 ;Epu:tlsur
sldemn auto_climatecontrol/Heater 5 0 5 0 Report. himl
Caontral ~TERIILAmL

To view the Model Advisor Command-Line Summary report after loading an object, use

the summaryReport function.

View Results in Model Advisor GUI

In the Model Advisor window, you can view the results of running the Model Advisor
programmatically using the viewReport function. In the Model Advisor window, you can
review results, run checks, fix warnings and failures, and view and save Model Advisor

reports.

Tip To fix warnings and failures, you must rerun the check in the Model Advisor window.

4-9

4 cCheck Systems Programmatically

View Model Advisor Report

For a single system or check, you can view the same Model Advisor report that you access
from the Model Advisor GUI.

To view the Model Advisor report for a system:
* Open the Model Advisor Command-Line Summary report. In the Systems Run table,

click the link for the Model Advisor report.
* Use the viewReport function.

To view individual check results:

* In the Command Window, generate a detailed report using the viewReport function
with the DisplayResults parameter set to Details, and then click the Pass,
Warning, or Fail link for the check. The Model Advisor report for the check opens.

e Use the view function.

See Also

ModelAdvisor.run | ModelAdvisor.summaryReport | view | viewReport

Related Examples

. “Archive and View Model Advisor Run Results” on page 4-11

. “Create a Function for Checking Multiple Systems” on page 4-3

. “Create a Function for Checking Multiple Systems in Parallel” on page 4-5

More About

. “Run Model Advisor Checks and Review Results” on page 3-5
. “Address Model Check Results” (Simulink)

. “Generate Model Advisor Reports” on page 3-105

. “Save and View Model Advisor Check Reports” (Simulink)

. “Find Model Advisor Check IDs” (Simulink)

. “Run Model Advisor Checks in Background” (Simulink)

. “Save and Load Process for Objects” (MATLAB)

4-10

Archive and View Model Advisor Run Results

Archive and View Model Advisor Run Results

This example guides you through archiving the results of running checks so that you can
review them at a later time. To simulate archiving and reviewing, the steps in the tutorial
detail how to save the results, clear out the MATLAB workspace (simulates shutting down
MATLAB), and then load and review the results.

1 Call the ModelAdvisor. run function:

SysResultObjArray = ModelAdvisor.run({'sldemo auto climatecontrol/Heater Control'},...
'Configuration', 'slvnvdemo_mdladv_config.mat');

2 Save the SystResul0Obj for use at a later time:

save my model advisor run SysResultObjArray
3 Clear the workspace to simulate viewing the results at a different time:

clear
4 Ioad the results of the Model Advisor run:

load my model advisor run SysResultObjArray
5 View the results in the Model Advisor:

viewReport(SysResultObjArray{1}, 'MA")

See Also

ModelAdvisor. run

Related Examples

. “Archive and View Results” on page 4-7

4-11

Model Metrics

5 Model Metrics

Collect and Explore Metric Data by Using the Metrics
Dashboard

5-2

The Metrics Dashboard collects and integrates quality metric data from multiple Model-

Based Design tools to provide you with an assessment of your project quality status. To
open the dashboard:

» In the Apps gallery, click Metrics Dashboard.

* At the command line, enter metricsdashboard(system). The system can be either

a model name or a block path to a subsystem. The system cannot be a Configurable
Subsystem block.

You can collect metric data by using the dashboard or programmatically by using the
slmetric.Engine API. When you open the dashboard, if you have previously collected

metric data for a particular model, the dashboard populates from existing data in the
database.

If you want to use the dashboard to collect (or recollect) metric data, in the toolbar:

* Use the Options menu to specify whether to include model references and libraries in
the data collection.

* Click All Metrics. If you do not want to collect metrics that require compiling the
model, click Non-Compile Metrics.

The Metrics Dashboard provides the system name and a data collection timestamp. If
there were issues during data collection, click the alert icon to see warnings.

Collect and Explore Metric Data by Using the Metrics Dashboard

METRICS DASHEOARD

j @ L;’ é\/ Sheowe

Open Options Non-Compile AN Metrics || 4
- - Metncs
FILF BN THAFSHON Ty
vdp

Created by: The MathWorks, Inc. Revision: 1.9
Coltected on: THEZ20MS, 1:42.43 FM

MODELING GLIDELINE COMPLIANCE

> >

81.5% 86.8%
High Integrity MaaBs
3%
B - —
High Infagrity MAAB

Madel Advisor Check Issues

Code Analyzer Diagnostic
Warnings Warnings

Metrics Dashboard Widgets

SIZE

12

Blocks

@ AACHITECTURE

Actual Reuse
Paotantial Reuse

Model Complexity

Biocks

Stateflow LOC

MATLAB LOC

1 Models 0 MATLABLOC

1 Files 0 Stateflow LOC

System Interface

The Metrics Dashboard contains widgets that provide visualization of metric data in these
categories: size, modeling guideline compliance, and architecture. To explore the data in
more detail, click an individual metric widget. For your selected metric, a table displays
the value, aggregated value, and measures (if applicable) at the model component level.
From the table, the dashboard provides traceability and hyperlinks to the data source so
that you can get detailed results and recommended actions for troubleshooting issues.

When exploring drill-in data, note that:

5-3

5 Model Metrics

The Metrics Dashboard calculates metric data per component. A component can be a
model, subsystem, chart, or MATLAB Function block.

You can view results in either a Tree or Table view. For the High Integrity and
MAAB compliance widgets, you can also choose a Grid view. To view highlighted
results, in the grid view, click a cell.

To sort the results by value or aggregated value, click the corresponding value column
header.

For metrics other than the High Integrity and MAAB compliance widgets, you can
filter results. To filter results, in the Table view, select the context menu on the right
side of the TYPE, COMPONENT, and PATH column headers. From the TYPE menu,
select applicable components. From the COMPONENT and PATH menus, type a
component name or path in the search bar. The Metrics Dashboard saves the filters for
a widget, so you can view metric details for other widgets and return to the filtered
results.

In the Table and Tree view, a value or aggregated value of n/a indicates that results
are not available for that component. If the value and aggregated value are n/a, the

Table view does not list the component. The Tree view does list such a component.

For the Stateflow LOC widget, the image shows the comparison.

r.IEthC.S DETALS METRICS DETAILS
—
Diashboard | Dashboard | | Table
i |
VIEW VISUALIZATIONS 3 WIEW .\I'ISUA'_ILA?EDNE | a
Effective lines of code for Stateflow blocks] Effective lines of code for Stateflow blecks 2
Effective number of lines of code for Stateflow blocks Effective number of lines of code for Statetlow blocks
COMSONENT TYPE STATEFLOW LOC STATEFLOW LOC
- sic I 7
si_car LEL s . TVPE COMPO FATH Q7Y | STATEFLOW LOC STATEFLOW LOC
Engine Subsystem nfa nfa Modsl T 7 i 17
vahich e 5 ¥
viehicle Subsysiem nfa nfa P <hift_logic vif_togic |1 = =
- transmission Subsystem n'a n'a
= fransmission ratio Subsyslem nia nia
Look-Uip Table MATLAB function | nfa nia
Tarque Converer Subsystem nia nfa
v chift_logic Chart 17 17
 selechon_statecalc_th | Subsystem nia nia

Laak-Lip MATLAB funclion nfa nla -

The metric data that is collected quantifies the overall system, including instances of
the same model. For aggregated values, the metric engine aggregates data from each
instance of a model in the referencing hierarchy. For example, if the same model is

Collect and Explore Metric Data by Using the Metrics Dashboard

referenced twice in the system hierarchy, its block count contributes twice to the
overall system block count.

» If a subsystem, chart, or MATLAB Function block uses a parameter or is flagged for an
issue, then the parameter count or issue count is increased for the parent component.

* The Metrics Dashboard analyzes variants.

For custom metrics, you can specify widgets to add to the dashboard. You can also remove
widgets. To learn more about customizing the Metrics Dashboard, see “Customize Metrics
Dashboard Layout and Functionality” on page 5-47.

Size

This table lists the Metrics Dashboard widgets that provide an overall picture of the size
of your system. When you drill into a widget, this table also lists the detailed information

available.

Widget Metric Drill-In Data

Blocks Simulink block count Number of blocks by component
(mathworks.metrics.SimulinkBlo
ckCount)

Models Model file count Number of model files by component
(mathworks.metrics.ModelFileCo
unt)

Files File count Number of model and library files by

(mathworks.metrics.FileCount) |component

MATILAB LOC Effective lines of MATLAB code Effective lines of code, in MATLAB
(mathworks.metrics.MatlabLOCCo |Function block and MATLAB functions
unt) in Stateflow, by component

Stateflow LOC Effective lines of code for Stateflow |Effective lines of code for Stateflow
blocks blocks by component
(mathworks.metrics.StateflowlLO
CCount)

3-5

5 Model Metrics

Widget

Metric

Drill-In Data

System Interface

Input and Output count
(mathworks.metrics.Explicit
I0Count)

¢« Parameter count
(mathworks.metrics.Paramete
rCount)

* Number of inputs and outputs by
component (includes trigger ports)

* Number of parameters by
component

Modeling Guideline Compliance

For this particular system, the model compliance widgets indicate the level of compliance
with industry standards and guidelines. This table lists the Metrics Dashboard widgets

related to modeling guideline compliance and the detailed information available when you
drill into the widget.

Widget Metric Drill-In Data
High Integrity Model Advisor standards check For each component:
Compliance compliance - High Integrity
(mathworks.metrics.ModelAdviso |* Percentage of checks passed
rCheckCompliance.hisl dol78) o Status of each check
Integration with the Model Advisor for
more detailed results.
MAAB Model Advisor standards check For each component:
Compliance compliance - MAAB
(mathworks.metrics.ModelAdviso |* Percentage of checks passed
rCheckCompliance.maab) » Status of each check
Integration with the Model Advisor for
more detailed results.
High Integrity | Model Advisor standards issues - * Number of compliance check issues

Check Issues

High Integrity
(mathworks.metrics.ModelAdviso
rCheckIssues.hisl dol78)

by component (see the following
Note below).

* Components without issues or
aggregated issues are not listed.

Collect and Explore Metric Data by Using the Metrics Dashboard

Widget Metric Drill-In Data
MAAB Check Model Advisor standards issues - * Number of compliance check issues
Issues MAAB by component (see the following
(mathworks.metrics.ModelAdviso Note below).
rCheckIssues.maab) * Components without issues or
aggregated issues are not listed.
Code Analyzer Warnings from MATLAB Code Number of Code Analyzer warnings by
Warnings Analyzer component.
(mathworks.metrics.MatlabCodeA
nalyzerWarnings)
Diagnostic Simulink diagnostic warning count |¢ Number of Simulink diagnostic
Warnings (mathworks.metrics.DiagnosticW warnings by component.

arningsCount)

+ If there are warnings, at the top of
the dashboard, there is a hyperlink
that opens the Diagnostic Viewer.

Note An issue with a compliance check that analyzes configuration parameters adds to

the issue count for the model that fails the check.

You can use the Metrics Dashboard to perform compliance and issues checking on your
own group of Model Advisor checks. For more information, see “Customize Metrics
Dashboard Layout and Functionality” on page 5-47.

Architecture

These widgets provide a view of your system architecture:

* The Potential Reuse/Actual Reuse widget shows the percentage of total number of
subcomponents that are clones and the percentage of total number of components that
are linked library blocks. Orange indicates potential reuse. Blue indicates actual

reuse.

* The other system architecture widgets use a value scale. For each value range for a
metric, a colored bar indicates the number of components that fall within that range.
Darker colors indicate more components.

5-7

5 Model Metrics

This table lists the Metrics Dashboard widgets related to architecture and the detailed

information available when you select the widget.

Widget

Metric

Drill-In Data

Potential Reuse /
Actual Reuse

Potential
Reuse(mathworks.metrics.CloneC
ontent) and Actual
Reuse(mathworks.metrics.Librar
yContent)

Fraction of total number of
subcomponents that are clones as a
percentage

Fraction of total number of
components that are linked library
blocks as a percentage

Integrate with the Identify Modeling
Clones tool by clicking the Open
Conversion Tool button.

Model Cyclomatic complexity Model complexity by component

Complexity (mathworks.metrics.CyclomaticC
omplexity)

Blocks Simulink block count Number of blocks by component
(mathworks.metrics.SimulinkBlo
ckCount)

Stateflow LOC Effective lines of code for Stateflow |Effective lines of code for Stateflow
blocks blocks by component
(mathworks.metrics.StateflowlLO
CCount)

MATLAB LOC Effective lines of MATLAB code Effective lines of code, in MATLAB

(mathworks.metrics.MatlabL0CCo
unt)

Function block and MATLAB functions
in Stateflow, by component

Metric Thresholds

For the Model Complexity, Modeling Guideline Compliance, and Reuse widgets, the
Metrics Dashboard contains default threshold values. These values indicate whether your
data is Compliant or requires review (Warning). For Compliant data, the widget contains
green. For warning data, the widget contains yellow. Widgets that do not have Metric
threshold values contain blue.

Collect and Explore Metric Data by Using the Metrics Dashboard

For the Modeling Guideline Compliance metrics, the metric threshold value is zero
Model Advisor issues. If you model has issues, the widgets contain yellow. If there are
no issues, the widgets contain green.

If your model has warnings, the Code Analyzer and Diagnostic widgets are yellow. If
there are no warnings, the widgets contain green.

For the reuse widgets, the metric threshold value is zero. If your model has potential
clones, the widget contains yellow. If there are no potential clones, the widget contains
green.

For the Model Complexity widget, the metric threshold value is 30. If your model has
a cyclomatic complexity greater than 30, the widget contains yellow. If the value is less
than or equal to 30, the widget contains green.

You can specify your own metric threshold values for all of the widgets in the Metrics
Dashboard. You can also specify values corresponding to a noncompliant range. For more
information, see “Customize Metrics Dashboard Layout and Functionality” on page 5-47.

Dashboard Limitations

When using the Metrics Dashboard, note these considerations:

The analysis root for the Metrics Dashboard cannot be a Configurable Subsystem
block.

The Model Advisor, a tool that the Metrics Dashboard uses for data collection, cannot
have more than one open session per model. For this reason, when the dashboard
collects data, it closes an existing Model Advisor session.

If you use an s1_customization.m file to customize Model Advisor checks, these
customizations can change your dashboard results. For example, if you hide Model
Advisor checks that the dashboard uses to collect metrics, the dashboard does not

collect results for those metrics.

When the dashboard collects metrics that require a model compilation, the software
changes to a temporary folder. Because of this folder change, relative path
dependencies in your model can become invalid.

The Metrics Dashboard does not count MAAB checks that are not about blocks as
issues. Examples include checks that warn about font formatting or file names. In the
Model Advisor Check Issues widget, the tool might report zero MAAB issues, but still
report issues in the MAAB Modeling Guideline Compliance widget. For more
information about these issues, click the MAAB Modeling Guideline Compliance
widget.

5-9

5 Model Metrics

5-10

See Also

More About

“Collect Model Metrics Programmatically” on page 5-18
“Model Metrics”
“Collect Compliance Data and Explore Results in the Model Advisor” on page 5-30

“Collect Metric Data Programmatically and View Data Through the Metrics
Dashboard” on page 5-35

Collect Model Metrics Using the Model Advisor

Collect Model Metrics Using the Model Advisor

To help you assess your model for size, complexity, and readability, you can run model
metrics in the Model Advisor By Task > Model Metrics subfolder.

Open the sldemo_fuelsys model.

In the model window, open the Modeling tab and click Model Advisor. A System
Selector — Model Advisor dialog box opens. Click OK.

3 In the left pane of the Model Advisor, navigate to By Task > Model Metrics. Select
the model metrics to run on your model.

4 || [Model Metrics
4 ||) Count Metrics
V] =] simulink black metric

|| Subsystem metric
| Library link metric
| Effective lines of MATLAE code metric
| gkakeflow abject mekric
| Lines of code For Stakeflow objecks metric
|| Subsystem depth metric
4 || [Complexity Metrics

V] -] ~Cyclomatic complesxity metric
4 || 1 Readability Metrics

V|] Mondescriptive black nanne metric

< (W (S S S S

| [] Data and struckure layer separation mekric

Click Run Selected Checks.

5 After the Model Advisor runs an analysis, in the left pane of the Model Advisor
window, select a model metric to explore the result. Select the metric Simulink
block metric. A summary table provides the number of blocks at the root model
level and subsystem level.

Display number of blocks in the model or subsystem.

Passed

.../fuel rate_controlairflow calc 24
sldemo_fi 20
sldemo_fuelsys/Dashboard 14
... Throttle & Manifold Throttle 14

W Mare (17 rows)

5-11

matlab:sldemo_fuelsys

5 Model Metrics

5-12

Alternatively, you can view the analysis results in the Model Advisor report.

After reviewing the metric results, you can update your model to meet size, complexity,
and readability recommendations.

See Also

More About

. “Model Metrics”

. “Model Metric Data Aggregation” on page 5-22

. “Collect Model Metrics Programmatically” on page 5-18

. “Create a Custom Model Metric for Nonvirtual Block Count” on page 5-13
. “Run Model Advisor Checks and Review Results” on page 3-5

Create a Custom Model Metric for Nonvirtual Block Count

Create a Custom Model Metric for Nonvirtual Block
Count

This example shows how to use the model metric API to create a custom model metric for
counting nonvirtual blocks in a model. After creating the metric, you can collect data for
the metric, access the results, and export the results.

Create Metric Class

To create a custom model metric, use the slmetric.metric.createNewMetricClass
function to create a new metric class derived from the base class
slmetric.metric.Metric. The slmetric.metric.createNewMetricClass function creates
a file that contains a constructor and an empty metric algorithm method.

1. For this example, make sure that you are in a writeable folder and create a new metric
class named nonvirtualblockcount.

className = 'nonvirtualblockcount"';
slmetric.metric.createNewMetricClass(className);

2. Write the metric algorithm into the slmetric.metric.Metric method, algorithm.
The algorithm calculates the metric data specified by the
Advisor.component.Component class. The Advisor.component.Types class
specifies the types of model objects for which you can calculate metric data. For this
example, the file nonvirtualblockcount orig.m contains the logic to create a metric
that counts the nonvirtual blocks. Copy this file to the nonvirtualblockcount.m file.

copyfile nonvirtualblockcount orig.m nonvirtualblockcount.m f

When creating a custom metric, you must set the following properties of the
slmetric.metric.Metric class:

* ID: Unique metric identifier that retrieves the new metric data.

* Name: Name of the metric algorithm.

* ComponentScope: Model components for which the metric is calculated.

* CompileContext: Compile mode for metric calculation. If your model requires model
compilation, specify PostCompile. Collecting metric data for compiled models slows
performance.

* ResultCheckSumCoverage: Specify whether you want the metric data regenerated if
source file and Version have not changed.

5-13

5 Model Metrics

5-14

* AggregationMode: How the metric algorithm aggregates metric data.

* AggregateComponentDetails: Returns all detailed results or aggregates detailed
results of the component.

Optionally, you can set these additional properties:

* Description: Description of the metric.
* Version: Metric version.

3. Now that your new model metric is defined in nonvirtualblockcount.m, you can register
the new metric in the metric repository.

[id metric,err msg] = slmetric.metric.registerMetric(className);

Collect Metric Data

To collect metric data on models, use instances of slmetric.Engine. Using the
getMetrics method, specify the metrics you want to collect. For this example, specify
the nonvirtual block count metric for the sldemo mdlref bus model.

1. Load the sldemo mdlref bus model.

model = 'sldemo mdlref bus';
load_system(model);

2. Create a metric engine object and set the analysis root.

metric_engine = slmetric.Engine();
setAnalysisRoot(metric_engine, 'Root',model, 'RootType', 'Model');

3. Collect metric data for the nonvirtual block count metric.

execute(metric_engine);
rc = getMetrics(metric_engine,id metric);

Display and Export Results

To access the metrics for your model, use instance of slmetric.metric.Result. In this
example, display the nonvirtual block count metrics for the sldemo mdlref bus model. For
each result, display the MetricID, ComponentPath, and Value.

for n=1:1length(rc)
if rc(n).Status ==
results = rc(n).Results;

Create a Custom Model Metric for Nonvirtual Block Count

for m=1:1length(results)
disp(['MetricID: ',results(m).MetricID]);

disp([' ComponentPath: ', results(m).ComponentPath]);
disp([' Value: ', num2str(results(m).Value)l);
disp(' ");
end
else
disp(['No results for:',rc(n).MetricID]);
end
disp(' ");

end

MetricID: nonvirtualblockcount
ComponentPath: sldemo mdlref bus
Value: 13

MetricID: nonvirtualblockcount
ComponentPath: sldemo mdlref bus/More Info3
Value: 0

MetricID: nonvirtualblockcount
ComponentPath: sldemo mdlref bus/More Info4
Value: 0

MetricID: nonvirtualblockcount
ComponentPath: sldemo mdlref bus/More Infol
Value: 0

MetricID: nonvirtualblockcount
ComponentPath: sldemo mdlref bus/More Info2
Value: 0

MetricID: nonvirtualblockcount
ComponentPath: sldemo mdlref counter_bus
Value: 2

MetricID: nonvirtualblockcount
ComponentPath: sldemo mdlref counter bus/COUNTER
Value: 6

MetricID: nonvirtualblockcount
ComponentPath: sldemo mdlref counter bus/COUNTER/Counter
Value: 3

5-15

5 Model Metrics

MetricID: nonvirtualblockcount
ComponentPath: sldemo mdlref counter bus/COUNTER/Counter/ResetCheck
Value: 4

MetricID: nonvirtualblockcount
ComponentPath: sldemo mdlref counter bus/COUNTER/Counter/ResetCheck/NoReset
Value: 2

MetricID: nonvirtualblockcount
ComponentPath: sldemo mdlref counter bus/COUNTER/Counter/ResetCheck/Reset
Value: 3

MetricID: nonvirtualblockcount
ComponentPath: sldemo mdlref counter bus/COUNTER/Counter/SaturationCheck
Value: 5

MetricID: nonvirtualblockcount
ComponentPath: sldemo mdlref counter bus/COUNTER/LimitsProcess
Value: 1

MetricID: nonvirtualblockcount
ComponentPath: sldemo mdlref counter bus/More Infol
Value: 0

MetricID: nonvirtualblockcount
ComponentPath: sldemo mdlref counter bus/More Info2
Value: 0

To export the metric results to an XML file, use the exportMetrics method. For each
metric result, the XML file includes the ComponentID, ComponentPath, MetricID,
Value, AggregatedValue, and Measure.

filename='MyMetricData.xml';
exportMetrics(metric_engine, filename);

For this example, unregister the nonvirtual block count metric.
slmetric.metric.unregisterMetric(id metric);
Close the model.

clear;
bdclose('all');

5-16

See Also

Limitations

Custom metric algorithms do not support the path property on component objects:
* Linked Stateflow charts
* MATLAB Function blocks

Custom metric algorithms do not follow library links.

Copyright 2019 The MathWorks, Inc.

See Also

Advisor.component.Component | Advisor.component.Types | slmetric.Engine
| stmetric.metric.Metric | slmetric.metric.Result |
slmetric.metric.createNewMetricClass

More About

. “Model Metrics”

. “Model Metric Data Aggregation” on page 5-22

. “Collect Model Metrics Programmatically” on page 5-18

5-17

5 Model Metrics

Collect Model Metrics Programmatically

This example shows how to use the model metric API to programmatically collect
subsystem and block count metrics for a model. After collecting metrics for the model,
you can access the results and export them to a file.

Example Model
Open model vdp.

model = 'vdp';
open_system(model);

? van der Pol Equation
x1
1-u*u - 2 1
1]* 1 X
X —»D—r . s s
Mu
"’ ﬁl_.D

Copyright 2004-2013 The MathWorks, Inc.

Collect Metrics

To collect metric data on a model, create a metric engine object and call execute.
metric engine = slmetric.Engine();

setAnalysisRoot(metric_engine, 'Root', 'vdp', 'RootType', 'Model');
execute(metric_engine);

5-18

https://localhost:31517/toolbox/matlab/codetools/liveeditor/%3Cmatlab:vdp%20vdp%3E

Collect Model Metrics Programmatically

Updating Model Advisor cache...
Model Advisor cache updated. For new customizations, to update the cache, use the Advi

Access Results

Using the getMetrics method, specify the metrics you want to collect. For this example,
specify the block count and subsystem count metrics for the vdp model. getMetrics
returns an array of slmetric.metric.ResultCollection objects.

res col = getMetrics(metric_engine, {'mathworks.metrics.SimulinkBlockCount", ...
'mathworks.metrics.SubSystemCount'});

Store and Display Results

Create cell array metricData to store the MetricID, ComponentPath, and Value for
the metric results. The MetricID is the identifier for the metric, the ComponentPath is
the path to component for which the metric is calculated, and the Value is the metric
value. Write a loop to display the results.

metricData ={'MetricID', 'ComponentPath', 'Value'};
cnt = 1;
for n=1:1length(res col)
if res col(n).Status ==
results = res _col(n).Results;

for m=1:1length(results)
disp(['MetricID: ',results(m).MetricID]);
disp([' ComponentPath: ', results(m).ComponentPath]);
disp([' Value: ',num2str(results(m).Value)l);
metricData{cnt+1,1} results(m).MetricID;
metricData{cnt+1,2} results(m).ComponentPath;
metricData{cnt+1,3} results(m).Value;
cnt = ¢cnt + 1;

end
else
disp(['No results for:',res col(n).MetricID]);
end
disp(' ');
end

MetricID: mathworks.metrics.SimulinkBlockCount
ComponentPath: vdp
Value: 11

MetricID: mathworks.metrics.SimulinkBlockCount
ComponentPath: vdp/More Info

5-19

5 Model Metrics

5-20

Value: 1

MetricID: mathworks.metrics.SubSystemCount
ComponentPath: vdp
Value: 1

MetricID: mathworks.metrics.SubSystemCount
ComponentPath: vdp/More Info
Value: 0O

Export Results

To export the metricData results MetricID, ComponentPath, and Value to a
spreadsheet, use writetable to write the contents of metricData to
MySpreadsheet.xlsx.

filename = 'MySpreadsheet.xlsx"';
T=table(metricData);
writetable(T, filename);

To export the metric results to an XML file, use the exportMetrics method. For each
metric result, the XML file includes the ComponentID, ComponentPath, MetricID,
Value, AggregatedValue, and Measure.

filename='MyMetricResults.xml"';
exportMetrics(metric_engine, filename)

Close the model vdp.
bdclose(model);

Limitations

For one model, you cannot collect metric data into the same database file (that is, the
Metrics.db file) on multiple platforms.

See Also

slmetric.Engine | slmetric.metric.Result |
slmetric.metric.ResultCollection

See Also

More About

. “Model Metrics”

. “Model Metric Data Aggregation” on page 5-22

. “Collect Model Metrics Using the Model Advisor” on page 5-11

. “Create a Custom Model Metric for Nonvirtual Block Count” on page 5-13

5-21

5 Model Metrics

Model Metric Data Aggregation

You can better understand the size, complexity, and readability of a model and its
components by analyzing aggregated model metric data. Aggregated metric data is
available in the AggregatedValue and AggregatedMeasures properties of an
slmetric.metric.Result object. The AggregatedValue property aggregates the
metric scalar values. The AggregatedMeasures property aggregates the metric
measures (that is, the detailed information about the metric values).

How Model Metric Aggregation Works

The implementation of a model metric defines how a metric aggregates data across a
component hierarchy. For MathWorks model metrics, the slmetric.metric.Metric
class defines model metric aggregation. This class includes these two aggregation
properties:

* AggregationMode, which has these options:

* Sum: Returns the sum of the Value property and the Value properties of its
children components across the component hierarchy. Returns the sum of the
Meaures property and the Measures properties of its children components across
the component hierarchy.

* Max: Returns the maximum of the Value property and the Value properties of its
children components across the component hierarchy. Returns the maximum of the
Measures property and the Measures properties of its children components
across the component hierarchy.

* None: No aggregation of metric values.
* AggregateComponentDetails is a Boolean value, which has these options:
* true: For metrics that return fine-granular results (that is, more than one result
per component), the software aggregates these results to the component level by

taking the sum of the values and measures properties. Returns a result that spans
the complete component.

» false: Returns the component results. The software does not aggregate the fine-
granular results.

The MathWorks model metrics that return fine-granular results are:

* “Cyclomatic complexity metric”, which creates a result for each state in a Chart.

5-22

Model Metric Data Aggregation

» “Effective lines of MATLAB code metric”, which creates a result for each function
or subfunction inside a MATLAB function block or a MATLAB function in Stateflow.

You can find descriptions of MathWorks model metrics and their aggregation property

settings in “Model Metrics”. For custom metrics, as part of the algorithm method, you
can define how the metric aggregates data. For more information, see “Create a Custom
Model Metric for Nonvirtual Block Count” on page 5-13.

This diagram shows how the software aggregates metric data across the components of a

model hierarchy. The parent model is at the top of the hierarchy. The components can be
the following:

Model

Subsystem block

Chart

MATLAB function block
Protected model

AggregationMode: Sum

V = Value Model
AV = AggregatedValue V=6 AV=T75
| |
Component Component Component
V=14 AV=33 V=7 AvV=17 V=6 AV=19
| Component Component ! Component | Component Component
V=8 AV=12 V=7 AV=7 V=10 AvV=10 V=4 AV=4 V=9 AV=9
Component
V=4 AvV=4

5-23

5 Model Metrics

5-24

Access Aggregated Metric Data

This example shows how to collect metric data programmatically in the metric engine,
and then access aggregated metric data.

1

Load the sldemo applyVarStruct model.

model = 'sldemo_applyVarStruct';
open(model);
load_system(model);

Create an slmetric.Engine object and set the analysis root.

metric_engine = slmetric.Engine();
setAnalysisRoot(metric_engine, 'Root',model, 'RootType', 'Model');

Collect data for the Input output model metric.

execute(metric_engine, 'mathworks.metrics.I0Count');

Get the model metric data that returns an array of
slmetric.metric.ResultCollection objects, res col. Specify the input
argument for AggregationDepth.

res col = getMetrics(metric_engine, 'mathworks.metrics.IOCount',...
'AggregationDepth', 'All');

The AggregationDepth input argument has two options: A11 and None. If you do
not want the getMetrics method to aggregate measures and values, specify None.

Display the results.

metricData ={'MetricID', 'ComponentPath', 'Value', ...
'AggregatedValue', 'Measures', 'AggregatedMeasures'};
cnt = 1;
for n=1:1length(res col)
if res col(n).Status ==
results = res col(n).Results;

for m=1:1length(results)
disp(['MetricID: ', results(m).MetricID]);

disp([' ComponentPath: ', results(m).ComponentPath]);
disp([' Value: ',num2str(results(m).Value)l);
disp([' Aggregated Value: ',num2str(results(m).AggregatedValue)l]);
disp([' Measures: ',num2str(results(m).Measures)]);
disp([' Aggregated Measures: ',...
nu

m2str(results(m).AggregatedMeasures)]);

Model Metric Data Aggregation

results .MetricID;
results .ComponentPath;

metricData{cnt+1,1} (m)

(m)
results(m).Value;
ts(

(m)

metricData{cnt+1,2}

metricData{cnt+1,3}

tdmetricData{cnt+1,4
metricData{cnt+1,5}

cnt = cnt + 1;

= results(m).Measures;
results .AggregatedMeasures;

s 1 nu

end
else
disp(['No results for:',res col(n).MetricID]);
end
disp(' ');
end

Here are the results:

MetricID: mathworks.metrics.IOCount
ComponentPath: sldemo applyVarStruct
Value: 3
Aggregated Value: 5
Measures: 1 2 0 0
Aggregated Measures: 3 2 0 0
MetricID: mathworks.metrics.IOCount
ComponentPath: sldemo applyVarStruct/Controller
Value: 4
Aggregated Value: 4
Measures: 3 1 0 O
Aggregated Measures: 3 1 0 0
MetricID: mathworks.metrics.IOCount
ComponentPath: sldemo applyVarStruct/Aircraft
Dynamics
Model
Value: 5
Aggregated Value: 5
Measures: 3 2 0 0
Aggregated Measures: 3 2 0 0
MetricID: mathworks.metrics.IOCount
ComponentPath: sldemo applyVarStruct/Dryden Wind
Gust Models
Value: 2
Aggregated Value: 2
Measures: 0 2 0 O
Aggregated Measures: 0 2 0 0
MetricID: mathworks.metrics.IOCount
ComponentPath: sldemo applyVarStruct/Nz pilot
calculation

5-25

5 Model Metrics

Value: 3

Aggregated Value: 3

Measures: 2 1 0 0
Aggregated Measures: 2 1 0 0

MetricID: mathworks.metrics.IOCount

ComponentPath: sldemo applyVarStruct/More Info2
Value: 0

Aggregated Value: 0

Measures: 0 0 0 0

Aggregated Measures: 0 0 0 0

For the Input output metric, the AggregationMode is Max. For each component, the
AggregatedValue and AggregatedMeasures properties are the maximum number of
inputs and outputs of itself and its children components. For example, for
sldemo_applyVarStruct, the AggregatedValue property is 5, which is the
sldemo_applyVarStruct/Aircraft Dynamics Model component value.

See Also

slmetric.Engine | slmetric.metric.Metric | slmetric.metric.Result |
slmetric.metric.ResultCollection

More About

5-26

“Model Metrics”

“Model Metric Data Aggregation” on page 5-22

“Collect Model Metrics Using the Model Advisor” on page 5-11

“Create a Custom Model Metric for Nonvirtual Block Count” on page 5-13

Identify Modeling Clones with the Metrics Dashboard

Identify Modeling Clones with the Metrics Dashboard

You can use the Metrics Dashboard tool to help you reuse subsystems by identifying
clones across a model hierarchy. Clones are identical MATLAB Function blocks, identical
Stateflow charts, and subsystems that have identical block types and connections. The
clones can have different parameter settings and values. To replace clones with links to
library blocks, from the Metrics Dashboard, you can open the Clone Detector app.

Identify Clones

To open the example model ex clone detection, change your directory to the
matlabroot\help\toolbox\simulink\examples folder. At the MATLAB command
line, enter:

cd(fullfile(docroot, 'toolbox','simulink', 'examples'));

(T)——»{m outt Int outt
In1
(2)——»m2 Cut2| InZ Cut2| x
In2
581 Product
In3 out3|
L0
s82
= »(1)
outi
o
@—-@_. o
In3
o1z Outt Int outt In1 |
Variant Sourcel
€D 2 outi
tn4 a13
8§83 In2 Out2 In2
—> 554 555
G14 L]
Int Outz
(5 p——wm outt]
In5
outt %& In2
In2 &1 I
In6 587 Variant Source2

Copyright 2017 The MathWorks Inc.

5-27

5 Model Metrics

5-28

A W N -

Save the ex clone detection.slx model to a local working folder.
On the Apps tab, click Metrics Dashboard.
In the Metrics Dasbhoard, click All Metrics.

In the Architecture section, the yellow bar in the Potential Reuse row indicates
that the model contains clones. The percentage is the fraction of the total number of
subsystems, including Stateflow Charts and MATLAB Function blocks, that are
clones. To see details, click the yellow bar.

The model contains three clone groups. SS1 and SS4 are part of clone group one. SS3
and SS5 are part of clone group two. SS6 and SS7 are part of clone group three.

Replace Clones with Links to Library Blocks

1

To replace clones with links to library blocks, open the Clone Detector app by clicking
Open Conversion Tool. The Clone Detection app opens. For more information on the
app, see “Enable Component Reuse by Using Clone Detection” on page 3-32.

Click Find Clones. The app contains a list of clone groups on the Clone Detection
Actions and Results pane, on the Map Clone Groups to Library tab.

Click Replace Clones. The Clone Detector app replaces the clones with links to
library blocks. The library blocks are in the library specified by the Library to place
clones parameter. This parameter is on the Map Clone Groups to Library tab. The
library is on the MATLAB path. It has a default name of newLibraryFile.

After you refactor, you can remove the latest changes from the model. In the Clone
Detection Actions and Results pane, in the Logs tab, open the latest log and click
Restore. Each time you refactor a model, the tool creates a backup model in the folder
named with the prefix m2m plus the model name.

If you have a Simulink Test license, you can verify the equivalency of the refactored model
and the original model. Click Check Equivalency.

Run Model Metrics on the Refactored Model

1

Navigate to the Metrics Dashboard.
Click All Metrics.

In the Architecture section, the blue bar in the Actual Reuse row indicates that
75% of model components are links to library subsystems. The Potential Reuse row

See Also

indicates that the model does not contain any clones that do not have links to library
blocks.

See Also

More About
. “Collect Model Metrics”

5-29

5 Model Metrics

Collect Compliance Data and Explore Results in the
Model Advisor

This example shows how to collect model metric data by using the Metrics Dashboard.
From the dashboard, explore detailed compliance results and, fix compliance issues by
using the Model Advisor.

Open the Example Model

Open the example model sldemo fuelsys and save the model to a local folder.

open_system('sldemo fuelsys');

Fault-Tolerant Fuel Control System

i

l | Thraottle
Command >
thrattle_sw il > (V)
Dashboard throttle | engine speed 02_out
Thrattle Angle — (radls) | raaiey i}
Fault Switch Throttle_Angle_Selector
englne_speed > = | throttle angle MAP Ll
i ! 3 1
Engine Speed speed_sw il > i fnart
spead
Engine Speed —
Fault Switch Engine_Speed_Selector| {g's) _ §
Convert L gl sensors fusl_rate f—| Convert — 3 gl airffusl ratio
o Lok} fuel 193] {1y 3
g
To Plant
ego_Sw il » o Han Engine Gas Dynamics
&0
EGO Fault Switch —
— fuel_rate_control
0Z_\oltage_Selector fuel l lai, fuel ratio
L
map_sw il >
map
MAF Fault Switch —
MAP_Salactor
To Controller

Open the Dashboard subsystem to simulate any combination of sensor failures. Copyright 1990-2017 The MathWorks, Inc.

Open the Metrics Dashboard

On the Apps tab, open the Metrics Dashboard by clicking Metrics Dashboard.

5-30

matlab:sldemo_fuelsys

Collect Compliance Data and Explore Results in the Model Advisor

Collect Model Metrics
To collect the metric data for this model, click the All Metrics icon.
Explore Compliance Results

Locate the MODELING GUIDELINE COMPLIANCE section of the dashboard. This
section displays the percentage of High Integrity and MAAB compliance checks that
passed on all systems. The bars chart show the number of issues reported by the checks
in the corresponding check group.

-4 -
85.0% 74.3%
High Integrity MAAB
o 187
- >
High Integrity MAAE

Model Advisor Check Issues

To see a table that details the number of compliance issues by component, click anywhere
on the High Integrity bar chart. For compliance checks that analyze configuration
settings, each check that does not pass adds 1 issue to the model on which it failed.

5-31

5 Model Metrics

METRICS DETAILS

Model Advisor standards issues for High Integrity &
Metric that counts the number of reported issues on modeling constructs by the High Integrity Model Advisor standards check grouping.

| Open resuits in Model Advisor |

Type Component Path Qly |ssues - lssues (incl
Descendants)
Model sldemo_fuelsys 1 51 200
Chart control_logic sldemo_fuelsysffuel rate_control/control_logic 1 41 44
Subsystem Throttle sldemo_fuelsys/Engine Gas Dynamics/Throttle & Manifold/Throttle 1 18 20
Subsystem Intake Manifold _..elsys/Engine Gas Dynamics/Throttle & Manifold/Intake Manifold 1 13 14
Subsystem airflow_calc sldemo_fuelsysffuel _rate_controlfaiflow_calc 1 1 1
Subsystem Mixing & Combustion sldemao_fuelsys/Engine Gas Dynamics/Mixing & Combustion 1 10 11
Subsystem Throttle & Manifold sldema_fuelsys/Engine Gas Dynamics/Throttie & Manifold 1] 43
Subsystem Dashboard sldemao_fuelsys/Dashboard 1] 9
Subsystem Engine Gas Dynamics sldemao_fuelsys/Engine Gas Dynamics 1 7 61
Subsystem validate_sample_time sldema_fuelsys/fuel_rate_controlivalidate_sample_time 1 5 5
Subsystem switchable_compensation ...mo_fuelsys/fuel_rate_controlfuel_calc/switchable_compensation 1 4 9
Subsystem fuel_rate_control sldema_fuelsys/fuel_rate_control 1 3 76
Subsystem fuel_calc sldema_fuelsys/uel_rate_controlffuel_calc 1 2 13
Subsystem To Controller sldema_fuelsys/To Controller 1 2 2
Subsystem rich_mode _fuel_rate_centrolifuel_calc/switchable_compensation/rich_mode 1 2 2
Subsystem feedforward_fuel_rate sldemo_fuelsys/fuel_rate_controlifuel_calcfeedforward_fuel_rate 1 2 2
Subsystem low_mode _fuel_rate_centrolifuel_calc/switchable_compensation/low_mode 1 2 2
MATLAB function MATLAB Function _..Dynamics/Throtile & Manifold/Intake Manifold/MATLAB Function 1 1 1
Subsystem Speed speed_estimate _.o_fuelsys/fuel_rate_controlicontrol_logic/Speed speed_estimate 1 1 1
MATLAB function f(theta) _..uelsys/Engine Gas Dynamics/Throttle & Manifold/Throttle/ftheta 1 1 1
MATLAE function a(pratio) _..elsys/Engine Gas Dynamics/Throttle & Manifold/Throttle/g(pratio 1 1 1
Subsystem Pressure. map_estimate _.._fuelsys/fuel_rate_control/control_legic/Pressure.map_estimate 1 1 1
Subsystem disabled_mode _..Tate_control/fuel_calc/switchable_compensation/disabled_mode 1 1 1
Subsystem To Plant sldemo_fuelsys/To Plant 1 1 1
MATLAB funclion EGO Sensor elsys/Engine Gas Dynamics/Mixing & Combustion/EGO Sensor 1 1 1
Subsystem Throttle throttle_estimate -..Tuelsysffuel_rate_control/control_logic/Throttle.throtile_estimate 1 1 1

From the table, open the Throttle component in the model editor by clicking the

component hyperlink in the table. The model editor highlights blocks in the component
that have compliance issues.

Collect Compliance Data and Explore Results in the Model Advisor

@sldemu_ﬁ.lelsvs P |Pa|Engine Gas Dynamics b |Pa| Throttle & Manifold B [Pa| Throttle

{a's)

Throttle Flow vs. Valve Angle and Pressure

Explore Compliance Results in the Model Advisor

1 In the Metrics Dashboard, return to the main dashboard page by clicking the
Dashboard icon.

Click the High Integrity percentage gauge.

To see the status for each compliance check, click the Table view.

Expand the sldemo fuelsys node.

gua A W N

To explore check results in more detail, click the Check safety-related diagnostic
settings for sample time hyperlink.

6 In the Model Advisor Highlight dialog box, click Check safety-related diagnostic
settings for sample time hyperlink.

5-33

5 Model Metrics

5-34

Fix a Compliance Issue

1

5

In the Model Advisor Report, the check results show the Current Value and
Recommended Value of diagnostic parameters.

To change the Current Value to the Recommended Value, click the parameter. The
Model Configuration Parameters dialog box opens.

Change the parameter settings.
Save your changes and close the dialog box.
Save the changes to the model.

Recollect Metrics

A W N -

Return to the Metrics Dashboard.
To recollect the model metrics, click the All Metrics icon.
To return to the main dashboard page, click the Dashboard icon.

Confirm that the number of High Integrity check issues is reduced and the
compliance percentage is increased.

See Also

More About

“Collect and Explore Metric Data by Using the Metrics Dashboard” on page 5-2
“Collect Model Metrics Programmatically” on page 5-18

Collect Metric Data Programmatically and View Data Through the Metrics Dashboard

Collect Metric Data Programmatically and View Data
Through the Metrics Dashboard

This example shows how to use the model metrics API to collect model metric data for
your model, and then explore the results by using the Metrics Dashboard.

Collect Metric Data Programmatically

To collect all of the available metrics for the model sldemo fuelsys, use the
slmetric.Engine API. The metrics engine stores the results in the metric repository file
in the current Simulation Cache Folder, slprj.

metric_engine = slmetric.Engine();
setAnalysisRoot(metric _engine, 'Root', 'sldemo fuelsys', 'RootType', 'Model"');
evalc('execute(metric _engine)');

Determine Model Compliance with MAAB Guidelines

To determine the percentage of MAAB checks that pass, use the metric compliance
results.

metricID = 'mathworks.metrics.ModelAdvisorCheckCompliance.maab';

metricResult = getAnalysisRootMetric(metric_engine, metricID);

disp(['MAAB compliance: ', num2str(100 * metricResult.AggregatedValue, 3),'%'1);
MAAB compliance: 69.3%

Open the Metrics Dashboard

To explore the collected compliance metrics in more detail, open the Metrics Dashboard
for the model.

metricsdashboard('sldemo fuelsys');

The Metrics Dashboard opens data for the model from the active metric repository, inside
the active Simulation Cache Folder. To view the previously collected data, the slprj
folder must be the same.

Find the MODELING GUIDELINE COMPLIANCE section of the dashboard. For each

category of compliance checks, the gauge indicates the percentage of compliance checks
that passed.

5-35

5 Model Metrics

MODELING GUIDELINE COMPLIANCE

- -
88.8% 69.3%
High Integrity MAAB
312
187
> - >
High Integrity MAAB

Model Advisor Check |ssues

The dashboard reports the same MAAB compliance percentage as the slmetric.Engine
API reports.

Explore the MAAB Compliance Results

Underneath the percentage gauges, the bar chart indicates the number of compliance
check issues. Click anywhere in the MAAB bar chart for Model Advisor Check Issues.

5-36

Collect Metric Data Programmatically and View Data Through the Metrics Dashboard

g
MAAE

The table details the number of check issues per model component. To sort the
components by number of check issues, click the Issues column.

5-37

5 Model Metrics

Mcdel Advisor standarcs issues for MAAB
MeTic that counts the number of reported issues on modeling constructs by the MAAB Model Advisor standards check groupng.

| Open results In Model Advisor |

Type Component Fath

Mode s demo_fuelsys sldemo_fuslsys

Chart enntiol_lng e cldemn_fumlsysifiel_rate_conirolicontro_lngic

Subsystem Speed speed_estimate sldemo_fuslsysffuel_rate_confrolicortro_logici3peed speed_estimate
Subsystem Throttle throttle_estimate sldemo_fuslsysffluel_rate_conirolicortro _logicThrottle throtile_esiimzte
Subsystem Fressure. map_estimate sldemo_fuslsysffuel_rate_conirolicortro_logic/iPressure map_estimate
Subsystem fusl_cale eldemo_fuslsysfuel_rate_conirolfusel_calc

Subsystem MIxing & Combustion =ldemo_fuelsys/Engine Gas Dynamics/Mixing & Combustion

Subsystem feedforward_fuel_rate <ldemo_fuelsysifuel_rate_conirolfuel_calcfeedforward_fuel_rate

Subsystem suitchable_compensaticn sldemo_fuslsysffuelrate_conirolfuel_calc/swichable_compensaton

MATLAD Function COC Sensor sldemo_fuslsys/Cngine Cas Dynemics/Mixing & Combustion/CCO Sensor
Subsystem valldate_sample_time £l0EMO_TUBISYSUSI_rate_conirolvaliiate_sample_tne

Subsystem CheckRange @ sldemo_fuslsysffuel_rate_controlvalidate_sample_tine/CheckRange
Subsystem disabled_mode __‘uelsysffuel_rate_controlffuel_calriswitchable_compensation/disabled_mode
Jubsystem low_mode sldemo_fuslsysifuel_rate_conirolfuel_calc/swichable_compensatondow_mode
Subsystem rich_mode -demo_fuslsysfluel_rate_conirolfue_calc/switchable_compensatonirich_mode
Subsystem System Lag @ | zldemo fulsvs/Engine Gas Dyner & Ci i tem Laq
Subsystem Throtile & Marifold sldemo_fuslsys/Engine Gae Dynzmics/Throttle & Manifold

Subsystem Intake Manifold sldemo_fueisys/Engine Gas Dynamics/Throttie & Manifold/Intake Manifold
Subsystem Cashboard sldemo_fuslsys/Dashbearc

MATLAB Function | MATLAE Fundion - [Engine Gas Dynamics/Thrattle & anifodiintake Manifold/MAT_AB Function
Subsystem Throttle sldemo_fuelsys/Cngine Gas Dynemics/Throttle & Manifold/Threttle

MATLAB Funclion | fitheia) (sldemo_fuelsys/Engine Gas Dynamics/Throttle & Manifold/Thrttle/f{(theta
MATLAB Function | gipratiol (sldemo_fuelsys/Engine Gas Dynamics/Throttle & Manifold/Throttie/gipratio
Subsystem Throttle Command @ | cldemo_fusleve/Throttle Command

Submyslan Tu Conbiuller sldemu_luzlsysTu Conlivlks

Subsystem Engine 3as Dynamics sldemo_fuslsys/Engine Gas Dynzmics

Subsystem To Pant cldemo fuslsys/To Flant

Subsystcm fucl_rate_cont-ol sldemo_fuslsysffucl_rate_conirol

Subsystem alrflow_calc sldemo_fusisysluel_rate_conirolairow_calc

See Also

More About
. “Collect Model Metrics Programmatically” on page 5-18

e R B e B S) e e e) e e e e

lssues

3

Issues (Incl. Desc...

312
an

M~ o
|5}

=

- o N[=|w
o

o|wm

141
22

. “Collect and Explore Metric Data by Using the Metrics Dashboard” on page 5-2

5-38

Fix Metric Threshold Violations in a Continuous Integration Systems Workflow

Fix Metric Threshold Violations in a Continuous
Integration Systems Workflow

This example shows how to use the Metrics Dashboard with open-source tools GitLab and
Jenkins to test and refine your model in a continuous integration systems workflow.
Continuous integration is the practice of merging all developer working copies of project
files to a shared mainline. This workflow saves time and improves quality by maintaining
version control and automating and standardizing testing.

This example refers to a project that contains the shipped project
matlab:sldemo slproject airframe and these additional files which are relevant to this
example:

* A MATLAB script that specifies metric thresholds and customizes the Metrics
Dashboard.

o A MATLAB unit test that collects metric data and checks whether there are metric
threshold violations.

The example uses the Jenkins continuous integration server to run the MATLAB unit test
to determine if there are metric threshold violations. Jenkins archives test results for you
to download and investigate locally. GitLab is an online Git repository manager that you
can configure to work with Jenkins. This diagram shows how Simulink Check, GitLab, and
Jenkins work together in a continuous integration workflow.

5-39

matlab:sldemo_slproject_airframe

5 Model Metrics

Continuous Integration Workflow

Phase 1: Feature Development

\ ‘ (
Create a GIT Implement change on Perform local Stage and Push branch to
commit changes

o 4 2 4 o —

Phase 2: Qualification Using Continuous Integration

feature branch | Simulink models qualification

Collect model ‘
Merge Request ‘ X X i . i
. . Run tests on topic metrics and Communicate test Archive analysis
triggers a job on i X
X branch compare against results to Jenkins ‘ results
Jenkins
thresholds |
~ < . e o/ o
.l

Phase 3: Investigate Quality Issues

Download archived results into Explore detailed analysis

results in Metrics Dashboard

local GIT repository workspace

4 4

Project Setup

The project contains all model, data, and configuration files including these files which
are required for this example:

* A MATLAB unit test that collects metric data for the project and checks that the model
files contain no metric threshold violations. For more information on the MATLAB Unit
tests, see “Script-Based Unit Tests” (MATLAB).

* A setup.mfile that activates the configuration XML files that define metric
thresholds, set custom metric families, and customizes the Metrics Dashboard layout.
For this example, this code is the setup.m script:

function setup

% refresh Model Advisor customizations
Advisor.Manager.refresh customizations();

% set metric configuration with thresholds
configFile = fullfile(pwd, 'config', 'MyConfiguration.xml');
slmetric.config.setActiveConfiguration(configFile);

uiconf = fullfile(pwd, 'config', 'MyDashboardConfiguration.xml');

5-40

Fix Metric Threshold Violations in a Continuous Integration Systems Workflow

slmetric.dashboard.setActiveConfiguration(uiconf);
end

On the Project tab, click Startup Shudown. For the Startup files field, specify the
setup.mfile.

For more information on how to customize the Metrics Dashboard, see “Customize
Metrics Dashboard Layout and Functionality” on page 5-47.

An sl customization.m file that activates the Model Advisor configuration file to
customize the Model Advisor checks. For more information, see “Create and Add
Custom Checks - Basic Examples” on page 7-6

A run script that executes during a Jenkins build. For this example, this code is in the
run.m file:

% script executed during Jenkins build
function run(IN_CI)
if (IN_CI)
jenkins workspace = getenv('WORKSPACE');
cd(jenkins workspace);
end
% open the sl project
slproj = simulinkproject(pwd);

% execute tests
runUnitTest();

slproj.close();

if IN CI
exit
end
end

A cleanup.m file that resets the active metric configuration to the default
configuration. For this example, this code is in the cleanup.m file script:

function cleanup
rmpath(fullfile(pwd, 'data'));
Advisor.Manager.refresh customizations();

% reset active metric configuration to default
slmetric.config.setActiveConfiguration('");

5-41

5 Model Metrics

5-42

slmetric.dashboard.setActiveConfiguration('");
end

On the Project tab, click Startup Shudown. For the Shutdown files field, specify the
cleanup.m file.

* A .gitignore file that verifies that derived artifacts are not checked into GitLab.
This code is in the .gitignore file:

work/**
reports/**
*.asv
*.autosave

GitLab Setup

Create a GitLab project for source-controlling your Project. For more information, see
https://docs.gitlab.com/ee/README.html.
Install the Git Client.

Set up a branching workflow. With GitLab, from the main branch, create a temporary
branch for implementing changes to the model files. Integration engineers can use
Jenkins test results to decide whether to merge a temporary branch into the master
branch. For more information, see

https://git-scm.com/book/en/v1/Git-Branching-Branching-Workflows.

3 Under Settings > Repository, protect the master branch by enforcing the use of
merge requests when developers want to merge their changes into the master
branch.

4 Under Settings, on the Integrations page, add a webhook to the URL of your
Jenkins project. This webhook triggers a build job on the Jenkins server.

Jenkins Setup

Install GitLab and Tap plugins. The MATLAB unit test uses the TAPPlugin to stream
results to a . tap file. To enable communication of test status from MATLAB to the Jenkins
job, Jenkins imports the . tap file.

Create a Jenkins project. Specify these configurations:

1 In your Jenkins project, click Configure.

https://docs.gitlab.com/ee/README.html
https://git-scm.com/book/en/v1/Git-Branching-Branching-Workflows

Fix Metric Threshold Violations in a Continuous Integration Systems Workflow

2 On the General tab, specify a project name.

3 On the Source Code Management tab, for the Repository URL field, specify the
URL of your GitLab repository.

4 On the Build Triggers tab, select Build when a change is pushed to GitLab.
On the Build tab, execute MATLAB to call the run script. The run script opens the
project and runs all unit tests. For the project in this example, the code is:
matlab -nodisplay -r...

"cd /var/lib/jenkins/workspace/'18b Metrics CI Demo'; run(true)"

6 In the Post-build Actions tab, configure the TAP plugin to publish TAP results to
Jenkins. In the Test Results field, specify reports/*. tap. For Files to archive,
specify reports/**,work/**,

The TAP plugin shows details from the MATLAB Unit test in the extended results of
the job. The Jenkins archiving infrastructure saves derived artifacts that are
generated during a Jenkins build.

Continuous Integration Workflow

After setting up your project, Jenkins, and GitLab, follow the continuous integration
workflow.

Phase 1: Feature Development

1 Create a local clone of the GitLab repository. See “Clone from Git Repository”
(MATLAB).

2 In Simulink, navigate to the local GitLab repository.

w

Create a feature branch and fetch and check-out files. See “Branch and Merge Files
with Git” (Simulink) and “Pull, Push, and Fetch Files with Git” (Simulink).

Make any necessary changes to the project files.
Simulate the model and validate the output in the Simulation Data Inspector.
Run MATLAB unit tests. For more information, see runtests.

N o »u b~

Add and commit the modified models to the feature branch. See “Branch and Merge
Files with Git” (Simulink) and “Pull, Push, and Fetch Files with Git” (Simulink).

8 Push changes to the GitLab repository. See “Branch and Merge Files with Git”
(Simulink) and “Pull, Push, and Fetch Files with Git” (Simulink).

5-43

5 Model Metrics

5-44

9 In GitLab, create a merge request. Select the feature branch as source branch and
the target branch as master. Click Compare Branches and Continue.

10 If the feature is not fully implemented, mark the merge request as a work in progress
by adding the letters WIP: at the beginning of the request. If the merge request is not
marked WIP:, it immediately triggers a build after creation.

11 Click Submit Merge Request.
Phase 2: Qualification by Using Continuous Integration

1 [f the letters WIP: are not at the beginning of the merge request, the push command
triggers a Jenkins build. In the Jenkins Setup part of this example, you configured
Jenkins to perform a build when you pushed changes to GitLab. To remove the
letters, click Resolve WIP status.

Navigate to the Jenkins project. In Build History, you can see the build status.
Click the Build.
Click Tap Test Results.

For this example, the MetricThresholdGateway.m unit test did not pass for three
metrics because these metrics did not meet the thresholds. To investigate this data,
you must download the data locally.

2
3
4
5

3 Taikires

All Failed Tests

Tast Nama

Dwration Age

metrics_ModelAdvisorCheckCompliance SysRool Required) 0 ms

bodelAdvisorChecklssues SysRoot RequiedGuid 0 ms

rh= matics SimulinkBlockCount

O ms

All Tests

Duration Sdatus Skip Todo
1-- tests MetricThresholdGateway/testC lsanMetricDataC ollocticn ms Mo]
£ - - tests Metric Threshold Galeway/tesiThresholis(MetriciD=mathworks_metrics_ClomeC ontent) Fms [Mo M

Fix Metric Threshold Violations in a Continuous Integration Systems Workflow

Phase 3: Investigate Quality Issues Locally

Download the archived results to a local Git repository workspace.
2 Unzip the downloaded files. Copy the reports/ and work/ folders to the respective

folders in the local repository.

3 To explore the results, open the project and the Metrics Dashboard.

A s Blythbosnd

P
g o SysenCeagn Descrptme % P Mooe! r ¢
haw Crosm IR | P -
wATaCE POCLWENTS. TOw Liv, morEd | m_‘| Oﬂ_ﬂ W AlMgs L0
[Al Project 143) | Madifled o rr TukggusL08
Mame
0 Dependency tnatpin B abats ogmmjed f14
:*::, s Comated ry: The MathiWecka. in
et Collecied on: 418701 13 AN
e
madeds
e 0 o unE A
ghatmnbbe
tignose
Y nm 0 n
-
BEO% T5.0%
abels > Req. Guidelings Rec. Guidelines
7 Clusicatien

—
L * .
iecumns e

Cument Branch:
ediscn
Bearrch-inatuc: Meeivmal

Concident with

aregin. 5- gitcrenaa-iosg ssdinal-cantii

-bongebudinal-coninolie

-
Detaibs] (i}
Code Analyzer Diagnostic
'y . Wamings Wamings

Mode Complexity

Bineks

Srmtefiow LOK

BATLAB LOGC

B Modeis 0 MATLAS LOC 0 — g
- .| 43 e
i)
6 Faes 0 Saatelow 1 OC Sysiorn irmieriace

4 To resolve the test failures, make the necessary updates to the models. Push the

changes to the feature branch in GitLab.

5 Integration engineers can use Jenkins test results to decide when it is acceptable to
perform the merge of the temporary branch into the master branch.

5-45

5 Model Metrics

See Also

slmetric.config.setActiveConfiguration |
slmetric.dashboard.setActiveConfiguration

More About

. “Collect Model Metric Data by Using the Metrics Dashboard” on page 1-8
. “Collect and Explore Metric Data by Using the Metrics Dashboard” on page 5-2

5-46

Customize Metrics Dashboard Layout and Functionality

Customize Metrics Dashboard Layout and Functionality

Customize the Metrics Dashboard by using the model metric programming interface.
Customizing the dashboard extends your ability to use model metrics to assess that your
model and code comply with size, complexity, and readability requirements. You can
perform these Metrics Dashboard customizations:

* Configure compliance metrics to obtain compliance and issues metric data on your
Model Advisor configuration.

* Customize the dashboard layout by adding custom metrics, removing widgets, and
configuring existing widgets.

* Categorize metric data as compliant, warning, and noncompliant by specifying metric
threshold values.

Configure Compliance Metrics

Use the Metrics Dashboard and metric APIs to obtain compliance and issues metric data
on your Model Advisor configuration or on an existing check group such as the MISRA
checks. To set up your own Model Advisor configuration, see “Organize Checks and
Folders Using the Model Advisor Configuration Editor” on page 8-5. After you have set
up your Model Advisor configuration, follow these steps to specify the check groups for
which you want to obtain compliance and issues metric data:

1. To open the model, at the MATLAB command prompt, enter this command:
sf _car

2. Open the default configuration (that is, the one that is shipped with the Metrics
Dashboard). Add a corresponding slmetric.config.Configuration object to the
base workspace.

metricconfig=slmetric.config.Configuration.openDefaultConfiguration();

3. Create a cell array consisting of the Check Group IDs that correspond to those check
groups. Obtain a Check Group ID by opening the Model Advisor Configuration Editor and
selecting the folder that contains the group of checks. The folder contains a Check
Group ID parameter.

values = {'maab', 'hisl dol78', ' SYSTEM By Task misra c'};

This cell array specifies MAAB, High-Integrity, and MISRA check groups. The values maab
and hisl dol178 correspond to a subset of MAAB and High-Integrity System checks. To

5-47

5 Model Metrics

include all checks, specify the value for the Check Group ID parameter from the Model
Advisor Configuration Editor.

4. To set the configuration, pass the values cell array into the
setMetricFamilyParameterValues method. The 'ModelAdvisorStandard' string
is a standard string that you must supply to thesetMetricFamilyParameterValues
method.

setMetricFamilyParameterValues(metricconfig, 'ModelAdvisorStandard', values);

5. Open the default configuration for the Metrics Dashboard layout (that is, the one that
ships with the Metrics Dashboard).

dashboardconfig = slmetric.dashboard.Configuration.openDefaultConfiguration();

6. Obtain the slmetric.dashboard.Layoutobject from the
slmetric.dashboard.Configuration object.

layout = getDashboardLayout(dashboardconfig);

7. Obtain widget objects that are in the layout object.

layoutWidget = getWidgets(layout);

8. The slmetric.dashboard.Layout object contains these objects:

* Anslmetric.dashboard.Container object that holds an
slmetrics.dashboard.Widget object of type SystemInfo. The red number one in
the diagram below indicates the SystemInfo widget.

* Anslmetric.dashboard.Groupobject that has the title SIZE.

* Anslmetrics.dashboard.Group object that has the title MODELING
GUIDELINE COMPLIANCE.

* Anslmetrics.dashboard.Group object that has the title ARCHITECTURE.

In the diagram, the red numbers 1, 2, 3, and 4 indicate their order in the layoutWidget
array. Obtain the compliance group from the layout.

complianceGroup = layoutWidget(3);

5-48

Customize Metrics Dashboard Layout and Functionality

4\ Metrics Dashboard

METRICS DASHEOARD
| 1 @ L> 5!3> Show:
PR
Dp' Wv Mefrics
FILE | RUN | THRESHOLDS
sf_car 1

Created by: The MathWorks, Inc. Revision:
1123

Collected 11412019, 8:41:10 1
on: AM Warnings

MODELING GUIDELINE COMPLIANCE 3

3.1.1 3.1.2

> (7

84.4% 70.8%
High Integrity MAAB
w313
85
> 2 >
High Integrity MAAB

Model Advisor Check Issues

3.2.1 3.2.2 0
Code Analyzer Diagnostic
Warnings Warnings

\
SZE2 |y

63

Blocks

@ ARCHITECTURE 4

Actual Reuse

Potential Reuse

Model Complexity

Blocks

Stateflow LOC

MATLAB LOC

1 Models
1 Files
v
0% 20%
o 20
o 20

22 MATLABLOC

17 Stateflow LOC

40%

40

40

40

40

o}

»l

System Interface

80% 100%

100

100

100

100

9. The modeling guideline compliance group contains two containers. The top container
contains the High Integrity and MAAB compliance and check issues widgets. The red
numbers 3.1.1, 3.1.2, and 3.1.3 indicate the order of the three widgets in the first
container. The second container contains the Code Analyzer Warnings and Diagnostic

Warnings widgets.

Remove the High Integrity compliance widget.

5-49

5 Model Metrics

complianceContainers = getWidgets(complianceGroup);
complianceContainerWidgets = getWidgets(complianceContainers(1));
complianceContainers(1).removeWidget (complianceContainerWidgets(1));

10. Create a custom widget for visualizing MISRA check issues metrics.

misraWidget = complianceContainers(1l).addwWidget('Custom', 1);
misraWidget.Title=('MISRA');

misraWidget.VisualizationType = 'RadialGauge’;

misraWidget.setMetricIDs('mathworks.metrics.ModelAdvisorCheckCompliance. SYSTEM By Tasl
misraWidget.setWidths(slmetric.dashboard.Width.Medium);

11. The bar chart widget visualizes the High Integrity and MAAB check groups. Point this
widget to the MISRA and MAAB check groups.

setMetricIDs(complianceContainerWidgets(3), ...
({'mathworks.metrics.ModelAdvisorCheckIssues. SYSTEM By Task misra c',...
"'mathworks.metrics.ModelAdvisorCheckIssues.maab'}));
complianceContainerWidgets(3).Labels = {'MISRA', 'MAAB'};

12. To run the Metrics Dashboard at this point in the example, uncomment out the
following lines of code. The save commands serialize the API information to XML files.
The slmetric.config.setActiveConfiguration and
slmetric.dashboard.setActiveConfiguration commands set the active
configuration objects.

save(metricconfig, 'FileName', 'MetricConfig.xml');

save(dashboardconfig, 'Filename', 'DashboardConfig.xml');
slmetric.config.setActiveConfiguration(fullfile(pwd, 'MetricConfig.xml"'));
slmetric.dashboard.setActiveConfiguration(fullfile(pwd, 'DashboardConfig.xml'));

o° o° o° o°

14. To open the Metrics Dashboard, uncomment this code.

% metricsdashboard sf car

15. Click the All Metrics button and run all metrics. The Metrics Dashboard displays
results for the MISRA checks instead of the High Integrity checks.

5-50

Customize Metrics Dashboard Layout and Functionality

4\ Metrics Dashboard - O X
METRICS DASHEOARD
| 1 @ L\\) D é) Show:
g ovins Mgy savies
- pi'nns Metrics
FILE RUN | THRESHOLDS ‘ =
SIZE
sf_car
Created by: The MathWorks, Inc. Revision: 1 Models 22 MATLAB LOC 0 0
1123 63 10
Collected 111412019, 9:03:00 2
0:1:: e AM Warnings Blocks 1 Files 17 Stateflow LOC System Interface
MODELING GUIDELINE COMPLIANCE @ ARCHITECTURE
Actual Reuse
’ > ’ » v
Potential Reuse
4 0% 20% 40% 60% 80% 100%
76.9% 70.8%
MISRA MAAB
v
83 Model Complexity I
0 20 40 60 80 100
B
3 0 20 40 60 80 100
— =
MISRA MAABE
Model Advisor Check Issues
Stateflow LOC
0 20 40 60 80 100
Code Ar)alyzer Dlagn_ostlc MATLAB LOC I
Warnings Warnings
0 20 40 60 80 100

16. Close the Metrics Dashboard.
Add a Custom Metric to Dashboard

Create a custom metric that counts nonvirtual blocks. To display this metric on the
Metrics Dashboard, specify a widget. Add it to the size group.

5-51

5 Model Metrics

1. Using the createNewMetricClass function, create a new metric class named
nonvirtualblockcount. The function creates a file, nonvirtualblockcount.m, in
the current working folder. The file contains a constructor and empty metric algorithm
method. For this example, make sure you are in a writable folder.

className = 'nonvirtualblockcount';
slmetric.metric.createNewMetricClass(className);

2. To write the metric algorithm, open the nonvirtualblockcount.m file and add the
metric to the file. For this example, the file nonvirtualblockcount orig.m contains
the logic to create a metric that counts the nonvirtual blocks. Copy this file to the to
nonvirtualblockcount.m.

copyfile nonvirtualblockcount orig.m nonvirtualblockcount.m f

3. Register the new metric in the metric repository.

[id metric,err msg] = slmetric.metric.registerMetric(className);

4. Remove the widget that represents the Simulink block count metric. This widget is the
first one in the size group. The size group is second in the layoutWidget array.

sizeGroup = layoutWidget(2);
sizeGroupWidgets = sizeGroup.getWidgets();
sizeGroup.removeWidget(sizeGroupWidgets(1));

5. Add a widget that displays the nonvirtual block count metric. For custom widgets, the
default visualization type is single value. If you want to use a different visualization type,
specify a different value for the VisualizationType property.

newWidget = sizeGroup.addWidget('Custom', 1);
newWidget.Title=('Nonvirtual Block Count');
newWidget.setMetricIDs('nonvirtualblockcount');
newWidget.setWidths(slmetric.dashboard.Width.Medium);
newWidget.setHeight(70);

6. Specify whether there are lines separating the custom widget from other widgets in the
group. These commands specify that there is a line to the right of the widget.

.top = false;

.bottom = false;

.left= false;

.right= true;
ewWidget.setSeparators([s, s, s, sl);

S0 ununuon

5-52

Customize Metrics Dashboard Layout and Functionality

7. To run the Metrics Dashboard at this point in the example, uncomment out the
following lines of code. The save commands serialize the API information to XML files.
The slmetric.config.setActiveConfiguration and
slmetric.dashboard.setActiveConfiguration commands set the active
configuration objects.

save(metricconfig, 'FileName', 'MetricConfig.xml');

save(dashboardconfig, 'Filename', 'DashboardConfig.xml');
slmetric.config.setActiveConfiguration(fullfile(pwd, 'MetricConfig.xml"'));
slmetric.dashboard.setActiveConfiguration(fullfile(pwd, 'DashboardConfig.xml'));

o® o° o° o°

oo

. To open the Metrics Dashboard, uncomment this code.

% metricsdashboard sf car

9. Click the All Metrics button and run all metrics. The Metrics Dashboard displays
results for the nonvirtual block count metric instead of the Simulink block count metric.

5-53

5 Model Metrics

MCDELING GUIDELINE COMPLIANCE

7

4\ Metrics Dashboard

METRICS DASHEOARD
ol - 3
a8 P L oo
s gt A
T R
FILE | RUN | THRESHOLDS ‘
SIZE
sf_car
Created by: The MathWorks, Inc. Revision:
1123
Collected 11412019, 9:15:10 2
on: AM Warnings

(3

76.9% 70.8%
MISRA MAAB
85
3
— [2
MISRA MAAB

Model Advisor Check Issues

0
Code Analyzer Diagnostic
Warnings Warnings

15

Nonvirtual Block Count

@ ARCHITECTURE

Actual Reuse

Potential Reuse

Model Complexity I

1] 20

Blocks

Stateflow LOC I

MATLAB LOC I

22 MATLABLOC

17 Stateflow LOC

40% 60%
40 60
40 60
40 60
40 60

o}

System Interface

100

100

100

100

100%

»l

5-54

10. Close the Metrics Dashboard.

Add Metric Thresholds

For the nonvirtual block count and MISRA metrics, specify metric threshold values.

Specifying these values enables you to access the quality of your model by categorizing

your metric data as follows:

Customize Metrics Dashboard Layout and Functionality

* Compliant — Metric data that is in an acceptable range.
* Warning — Metric data that requires review.
* Noncompliant — Metric data that requires you to modify your model.

1. Access the slmetric.config.ThresholdConfiguration object in the
slmetric.config.Configuration object metricconfig. Create the corresponding
slmetric.config.ThresholdConfiguration object (TC) in the base workspace.

TC=getThresholdConfigurations(metricconfig);

2. Add two slmetric.config.Threshold objects to TC. Each
slmetric.config.Threshold object contains a default
slmetric.config.Classification object that is compliant. Specify the compliant
metric ranges.

Tl=addThreshold(TC, 'mathworks.metrics.ModelAdvisorCheckIssues. SYSTEM By Task misra c'
'AggregatedValue');

C=getClassifications(Tl);

C.Range.Start=-inf;

C.Range.End=0;

C.Range.IncludeStart=0;

C.Range.IncludeEnd=1;

T2=addThreshold(TC, 'mathworks.metrics.ModelAdvisorCheckCompliance. SYSTEM By Task misr:
'AggregatedValue');

C=getClassifications(T2);

C.Range.Start=1;

C.Range.End=inf;

C.Range.IncludeStart=1;

C.Range.IncludeEnd=0;

3. For each slmetric.config.Threshold object, specify the Warning ranges.

C=addClassification(T1l, 'Warning"');
C.Range.Start=0;

C.Range.End=inf;
C.Range.IncludeStart=0;
C.Range.IncludeEnd=1;

C=addClassification(T2, 'Warning');
C.Range.Start=-inf;

C.Range.End=1;
C.Range.IncludeStart=0;
C.Range.IncludeEnd=0;

3-35

5 Model Metrics

These commands specify that if the MISRA checks have issues, the model status is
warning. If there are no issues, the model status is compliant.

4. Add a third slmetric.config.Threshold object to TC. Specify compliant, warning,
and noncompliant ranges for this stmetric.config.Threshold object.

T3=addThreshold(TC, 'nonvirtualblockcount', 'AggregatedValue');
C=getClassifications(T3);

C.Range.Start=-inf;

C.Range.End=20;

C.Range.IncludeStart=1;

C.Range.IncludeEnd=1;

C=addClassification(T3, 'Warning');
C.Range.Start=20;

C.Range.End=30;
C.Range.IncludeStart=0;
C.Range.IncludeEnd=1;

C=addClassification(T3, 'NonCompliant');
C.Range.Start=30;
C.Range.End=inf;

C.Range.IncludeStart=0;
C.Range.IncludeEnd=1;

These commands specify that the compliant range is less than or equal to 20. The

warning range is from 20 up to but not including 30. The noncompliant range is greater
than 30.

5. Save the configuration objects. These commands serialize the API information to XML
files.

save(metricconfig, 'FileName', 'MetricConfig.xml');
save(dashboardconfig, 'Filename', 'DashboardConfig.xml"');

6. Set the active configurations.

slmetric.config.setActiveConfiguration(fullfile(pwd, 'MetricConfig.xml'));
slmetric.dashboard.setActiveConfiguration(fullfile(pwd, 'DashboardConfig.xml"));

7. For your model, open the Metrics Dashboard.

metricsdashboard sf car

5-56

Customize Metrics Dashboard Layout and Functionality

4\ Metrics Dashboard

METRICS DASHEOARD

1 @ LP é) Shou

Open s N ormie A4k
- - Metrics
FILE | RUN | THRESHOLDS
sf_car

Created by: The MathWorks, Inc. Revision:

1123

Collected on: 1/14/2019, 9:15:10 AM

MQDELING GUIDELINE COMPLIANCE

2

76.9%
MISRA

3
»

MISRA

(3

70.8%
MAAB

85

>
MAAE

Model Advisor Check Issues

Code Analyzer
Warnings

0

Diagnostic
Warnings

\
@ size

15

Nonvirtual Block Count

@ ARCHITECTURE

Actual Reuse

Potential Reuse

Model Complexity

Blocks

Stateflow LOC

MATLAB LOC

20

20

20

20

22 MATLABLOC

17

40%

40

40

40

40

Stateflow LOC

0

»l

System Interface

30% 100%

100

100

100

100

For the MISRA check compliance issues, the gauge is yellow because 76% of the checks
pass. Any percentage less than 100% is a warning. The bar chart also displays a yellow
because the model contains three MISRA check issues. Any number greater than zero is a
warning.

The Nonvirtual Block Count widget is in the compliant range because there are 15
nonvirtual blocks.

5-57

5 Model Metrics

8. To reset the configuration and unregister the metric, uncomment and execute these
commands:

slmetric.metric.unregisterMetric(className);
slmetric.dashboard.setActiveConfiguration("'"'
slmetric.config.setActiveConfiguration('"');

);

o° o° o°

See Also

slmetric.dashboard.Configuration | slmetric.config.Configuration

More About
. “Collect Model Metrics”
. “Collect and Explore Metric Data by Using the Metrics Dashboard” on page 5-2

5-58

Overview of Customizing the Model
Advisor

6 Overview of Customizing the Model Advisor

Model Advisor Customization

6-2

Using Model Advisor APIs and the Model Advisor Configuration Editor, you can:

* Create your own Model Advisor checks.
* Create custom configurations.

* Specify the order in which you make changes to your model.

* Create multiple custom configurations for different projects or modeling guidelines,
and switch between these configurations in the Model Advisor.

* Deploy custom configurations to your users.

To

See

Create Model Advisor checks.

“Create Model Advisor Checks”

Format check results.

“Format Check Results” on page 7-86

Create custom Model Advisor
configurations.

“Create Custom Configurations” on page 8-
2

Specify the order in which you make
changes to your model.

“Organize and Deploy Model Advisor
Checks”

Deploy custom configurations to your users.

“Organize and Deploy Model Advisor
Checks”

Verify that models comply with modeling

guidelines.

“Check Model Compliance”

Requirements for Customizing the Model Advisor

Before customizing the Model Advisor:

» Ifyou want to create checks, know how to create a MATLAB script. For more
information, see “Create Scripts” (MATLAB).

* Understand how to access model constructs that you want to check. For example,
know how to find block and model parameters. For more information on using utilities
for creating check callbacks, see “Common Utilities for Creating Checks” on page 7-

5.

Create Model Advisor Checks

7 Create Model Advisor Checks

Create Model Advisor Checks Workflow

1

7-2

On your MATLAB path, create a customization file named sl customization.m. In
this file, create a sl customization() function to register the custom checks that
you create with the Model Advisor. For detailed information, see “Register Checks”
on page 7-42.

Define custom checks and where they appear in the Model Advisor. For detailed
information, see “Define Custom Checks” on page 7-47.

Specify what actions you want the Model Advisor to take for the custom checks by
creating a check callback function for each custom check. For detailed information,
see “Create Callback Functions and Results” on page 7-56.

Optionally, specify what automatic fix operations the Model Advisor performs by
creating an action callback function. For detailed information, see “Action Callback
Function” on page 7-65.

Customization File Overview

Customization File

Overview

A customization file is a MATLAB file that you create and name sl customization.m.
The s1_customization.m file contains a set of functions for registering and defining
custom checks, tasks, and groups. To set up the sl _customization.m file, follow the

guidelines in this table.

Function

Description

When Required

sl customization()

Registers custom checks, tasks,
folders, and callbacks with the
Simulink customization
manager at start-up. See
“Register Checks” on page 7-
42.

Required for customizations to
the Model Advisor.

One or more check definitions

Defines custom checks. See
“Define Custom Checks” on
page 7-47.

Required for custom checks and
to add custom checks to the By
Product folder.

If the By Product folder is not
displayed in the Model Advisor
window, select Show By
Product Folder from the
Settings > Preferences dialog
box.

Check callback functions

Defines the actions of the
custom checks. See “Create
Callback Functions and Results”
on page 7-56.

Required for custom checks.
You must write one callback
function for each custom check

One or more calls to check input | Specifies input parameters to Optional
parameters custom checks. See “Define

Check Input Parameters” on

page 7-51.
One or more calls to checklist |Specifies calls to the Model Optional

views

Advisor Result Explorer for
custom checks. See “Define
Model Advisor Result Explorer
Views” on page 7-52.

7 Create Model Advisor Checks

Function Description When Required
One or more calls to check Specifies actions the software |Optional
actions performs for custom checks.

See “Define Check Actions” on
page 7-53 and “Action Callback
Function” on page 7-65.

This example shows a custom configuration of the model Advisor that has custom checks
defined in custom folders and procedures. The selected check includes input parameters,
list view parameters, and actions.

Example task with input parameter and auto-fix ability

4 Model Advisar

4 [7] 3 By Product Raies -
4 3 Demo Example style three calback
| Check SimulinK Input Parameters

] Check Simulink 7] Skip font checks.
| Check model o
4 =) By Task Standard font size 12 valid font Arial

4 21 Demo Factary Gro
-] Check Simulink -
"~ Check Simulink
| Check model o
4 =) My Group
| Example task with Click Run This Check.
| Example task 2
| Example task 3
> ll-'h'_p My Procedure

Result: []| MotRun E

m

Action
Click the button to update all blocks with spedified font

Fix block fonts

Common Utilities for Creating Checks

Common Utilities for Creating Checks

When you create a custom check, there are common Simulink utilities that you can use to
make the check perform different actions. Following is a list of utilities and when to use
them. In the Utility column, click the link for more information about the utility.

Utility

Used For...

find system

Getting handle or path to:

¢ Blocks
¢ Lines
¢ Annotations

When getting the object, you can:

* Specify a search depth
e Search under masks and libraries

get param/set param

Getting and setting system and block
parameter values.

Property Inspector

Getting object properties. First you must
get a handle to the object.

evalin

Working in the base workspace.

Simulink identifier (SID)

Identifying Simulink blocks, model
annotations or Stateflow objects. The SID is
a unique number within the model,
assigned by Simulink. For details, see
“Locate Diagram Components Using
Simulink Identifiers” (Simulink).

Stateflow API (Stateflow)

Programmatic access to Stateflow objects.

7-3

7 Create Model Advisor Checks

Create and Add Custom Checks - Basic Examples

To See

Add a customized check to a Model Advisor |“Add Custom Check to by Product Folder”

By Product > Demo subfolder. on page 7-6

Create a Model Advisor pass/fail check. “Create Customized Pass/Fail Check” on
page 7-7

Create a Model Advisor pass/fail check with | “Create Customized Pass/Fail Check with
a fix action. Fix Action” on page 7-10

Create a Model Advisor pass/fail check with | “Create Customized Pass/Fail Check with
detailed result collections Detailed Result Collections” on page 7-14

Add Custom Check to by Product Folder

This example shows how to add a custom check to a Model Advisor By Product > Demo
subfolder. In this example, the customized check does not check model elements.

1 In your working folder, create the sl customization.m file. This file registers and
creates the check registration function defineModelAdvisorChecks, which in turn
registers the check callback function SimpleCallback. The function
defineModelAdvisorChecks uses a ModelAdvisor.Root object to define the
check interface.

function sl customization(cm)

% --- register custom checks
cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

% --- defineModelAdvisorChecks function

function defineModelAdvisorChecks

mdladvRoot = ModelAdvisor.Root;

rec = ModelAdvisor.Check('exampleCheck"');

rec.Title = 'Example of a customized check';

rec.TitleTips = 'Added customized check to Product Folder';
rec.setCallbackFcn(@SimpleCallback, 'None', 'StyleOne');
mdladvRoot.publish(rec, 'Demo');

% --- creates SimpleCallback function
function result = SimpleCallback(system);
result={};

Close the Model Advisor and your model if either are open.
In the Command Window, enter:

Create and Add Custom Checks - Basic Examples

Advisor.Manager.refresh customizations

From the MATLAB window, select New > Simulink Model to open a new Simulink
model window.

In the Modeling tab, select Model Advisor. A System Selector — Model Advisor
dialog box opens. Click OK. The Model Advisor opens.

In the left pane, expand the By Product folder to display the subfolders. The
customized check Example of a customized check appears in the By Product >
Demo subfolder.

Note If the By Product folder is not displayed in the Model Advisor window, select
SettingsPreferencesShow By Product Folder.

The following commands in the s1 customization.m file create the right pane of
the Model Advisor.

Example of a customized check
Analysis

Added customized chedk to Product Folder

Run This Chedk

Result: [| MotRun

Click Run This Check.

rec.Title = 'Example of a customized check';
rec.TitleTips = 'Added customized check to Product Folder';

Create Customized Pass/Fail Check

This example shows how to create a Model Advisor pass/fail check. In this example, the
Model Advisor checks Constant blocks. If a Constant blocks value is numeric, the check
fails.

1

In your working folder, update the s1 customization.m file. This file registers and
creates the check registration function defineModelAdvisorChecks, which also
registers the check callback function SimpleCallback. The function
SimpleCallback creates a check that finds Constant blocks that have numeric
values. SimpleCallback uses the Model Advisor format template.

7-7

7 Create Model Advisor Checks

function sl customization(cm)

% --- register custom checks
cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

% --- defineModelAdvisorChecks function

function defineModelAdvisorChecks

mdladvRoot = ModelAdvisor.Root;

rec = ModelAdvisor.Check('exampleCheck"');

rec.Title = 'Check Constant block usage';

rec.TitleTips = ['Fail if Constant block value is a number; Pass if'
' Constant block value is a letter'];

rec.setCallbackFcn(@SimpleCallback, 'None', 'StyleOne"')

mdladvRoot.publish(rec, 'Demo');

% --- SimpleCallback function that checks constant blocks
function result = SimpleCallback(system)

mdladvObj Simulink.ModelAdvisor.getModelAdvisor(system);
result {};

all constant blk=find system(system, 'LookUnderMasks','all',...
'FollowLinks"', 'on', 'BlockType', 'Constant');
blk with value=find system(all constant blk, 'RegExp','On', 'Value', '~[0-9]");

ft = ModelAdvisor.FormatTemplate('ListTemplate');
ft.setInformation(['This check looks for constant blocks that'...
' use numeric values']);
if ~isempty(blk with value)
ft.setSubResultStatusText(['Check has failed. The following '...
'Constant blocks have numeric values:']);
ft.setListObj (blk with value);
ft.setSubResultStatus('warn');
ft.setRecAction('Parameterize the constant block');
mdladvObj.setCheckResultStatus(false);
else
ft.setSubResultStatusText(['Check has passed. No constant blocks'...
' with numeric values were found.']);
ft.setSubResultStatus('pass');
mdladvObj.setCheckResultStatus(true);
end
ft.setSubBar(0);
result{end+1} = ft;

Close the Model Advisor and your model if either are open.
In the Command Window, enter:

Advisor.Manager.refresh customizations

4 From the MATLAB window, select New > Simulink Model to open a new Simulink
model window.

Create and Add Custom Checks - Basic Examples

In the Simulink model window, create two Constant blocks named Const one and
Const 1. Right-click on a block, choose Block Parameters, and assign the Constant
value as follows:

» For Const_one, set the value to one.

* For Const 1, set the value to 1.

Save your model as example2 qs

In the Modeling tab, select Model Advisor. A System Selector — Model Advisor
dialog box opens. Click OK. The Model Advisor opens.

In the left pane, select By Product > Demo > Check Constant block usage.

Note If the By Product folder is not displayed in the Model Advisor window, select
SettingsPreferencesShow By Product Folder.

Select Run This Check. The Model Advisor check fails for the Const 1 block and
displays a Recommended Action.

The following commands in the s1_customization.m file create the right pane in
the Model Advisor.

Check Constant block usage
Analysis

Fail if Constant block value is a number; Pass if Constant block value is a letter

Result: /Ay Warning

This check looks for constant blocks thatuse numeric values

Check has failed. The following Constant blocks have numeric values:

* examplel gs/Const_1

Recommended Action
Parameterize the constant block

Check Constant block usage

rec.Title = 'Check Constant block usage';
rec.TitleTips = ['Fail if Constant block value is a number; Pass if' ...
' Constant block value is a letter'];

Recommended Action

ft.setInformation(['This check looks for constant blocks that'...
' use numeric values']);
ft.setSubResultStatusText(['Check has failed. The following '...
"Constant blocks have numeric values:']);

7 Create Model Advisor Checks

7-10

ft.setListObj(blk with value);
ft.setSubResultStatus('warn');
ft.setRecAction('Parameterize the constant block');

10 Follow the Recommended Action for fixing the failed Constant block. In the Model
Advisor dialog box:

* Double-click the example2 gs/Const 1 hyperlink.
* Change the Constant value to two, or a nonnumeric value.
* Rerun the Model Advisor check. Both Constant blocks now pass the check.

Create Customized Pass/Fail Check with Fix Action

This example shows how to create a Model Advisor pass/fail check with a fix action. In
this example, the Model Advisor checks Constant blocks. If a Constant block value is
numeric, the check fails. The Model Advisor is also customized to create a fix action for
the failed checks.

1 In your working folder, update the sl customization.m file. This file contains
three functions, each of which use the Model Advisor format template:

+ defineModelAdvisorChecks — Defines the check, creates input parameters,
and defines the fix action.

+ simpleCallback — Creates the check callback function that finds Constant
blocks with numeric values.

* simpleActionCallback — Creates the fix for Constant blocks that fail the
check.

function sl customization(cm)

% --- register custom checks
cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

% --- defineModelAdvisorChecks function

function defineModelAdvisorChecks

mdladvRoot = ModelAdvisor.Root;

rec = ModelAdvisor.Check('exampleCheck');

rec.Title = 'Check Constant block usage';

rec.TitleTips = ['Fail if Constant block value is a number; Pass if '
'Constant block value is a letter'];

rec.setCallbackFcn(@SimpleCallback, 'None', 'StyleOne"')

% --- input parameters
rec.setInputParametersLayoutGrid([1 1]);
inputParaml = ModelAdvisor.InputParameter;

Create and Add Custom Checks - Basic Examples

inputParaml.Name = 'Text entry example';
inputParaml.Value='VarNm';
inputParaml.Type='String"';
inputParaml.Description="'sample tooltip';
inputParaml.setRowSpan([1 1]);
inputParaml.setColSpan([1 1]);
rec.setInputParameters({inputParaml});

% -- set fix operation

myAction = ModelAdvisor.Action;

myAction.setCallbackFcn(@simpleActionCallback);

myAction.Name='Fix Constant blocks';

myAction.Description=['Click the button to update all blocks with'...
' Text entry example'l];

rec.setAction(myAction);

mdladvRoot.publish(rec, 'Demo');

% --- SimpleCallback function that checks constant blocks
function result = SimpleCallback(system)

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);
result = {};

all constant blk=find system(system, 'LookUnderMasks','all',...
'FollowLinks"', 'on', 'BlockType', 'Constant');
blk with value=find system(all constant blk, 'RegExp','On', 'Value', '~[0-9]");

ft = ModelAdvisor.FormatTemplate('ListTemplate');
ft.setInformation(['This check looks for constant blocks that'...
' use numeric values']);
if ~isempty(blk with value)
ft.setSubResultStatusText(['Check has failed. The following '...
'Constant blocks have numeric values:']);
ft.setListObj (blk with value);
ft.setSubResultStatus('warn');
ft.setRecAction('Parameterize the constant block');
mdladvObj.setCheckResultStatus(false);
mdladvObj.setActionEnable(true);
else
ft.setSubResultStatusText(['Check has passed. No constant blocks'...
'with numeric values were found.']);
ft.setSubResultStatus('pass');
mdladvObj.setCheckResultStatus(true);
end
ft.setSubBar(0);
result{end+1} = ft;

% --- creates SimpleActionCallback function that fixes failed check
function result = simpleActionCallback(taskobj)

mdladvObj = taskobj.MAObj;

result = {};

system = getfullname(mdladvObj.System);

% Get the string from the input parameter box.

7-11

7 Create Model Advisor Checks

7-12

10

inputParams
textEntryEx

mdladvObj.getInputParameters;
inputParams{1}.Value;

all constant blk=find system(system, 'LookUnderMasks','all',...
'FollowLinks"', 'on', 'BlockType', 'Constant');
blk with value=find system(all constant blk, 'RegExp','On', 'Value', '~[0-9]");
ft = ModelAdvisor.FormatTemplate('TableTemplate');
% Define table col titles
ft.setColTitles({'Block','0ld Value', 'New Value'})
for inx=1l:size(blk with value)
oldvVal = get param(blk with value{inx}, 'Value');
ft.addRow({blk with value{inx},oldVal,textEntryEx});
set param(blk with value{inx}, 'Value',textEntryEx);
end

ft.setSubBar(0);

result = ft;

mdladvObj.setActionEnable(false);

Close the Model Advisor and your model if either are open.

At the command prompt, enter:

Advisor.Manager.refresh customizations

From the Command Window, select New > Simulink Model to open a new model.
In the Simulink model window, create two Constant blocks named Const one and
Const_1. Right-click on a block, choose Block Parameters, and assign the Constant
value as follows:

» For Const_one, set the value to one.

* For Const 1, set the value to 1.

Save your model as example3 gs.

In the Modeling tab, select Model Advisor. A System Selector — Model Advisor
dialog box opens. Click OK. The Model Advisor opens.

In the left pane, select By Product > Demo > Check Constant block usage.

Note If the By Product folder is not displayed in the Model Advisor window, select
SettingsPreferencesShow By Product Folder.

Select Run This Check. The Model Advisor check fails for the Const 1 block.

The following commands in the s1 customization.m file create the right pane in
the Model Advisor.

Create and Add Custom Checks - Basic Examples

11

12

Check Constant block usage
Analysis
Fail if Constant block value is a number; Pass if Constant block value is a letter

Input Parameters

Textentry example Varkim

Result: /&y, Warning

This check looks for constant blocks that use numeric vales

Check has failed. The following Constant blocks have numeric values.

e example3_gs/Const_1

Recommended Action
Parameterize the constant block

Action
Click the button to update all blocks withText entry example

Fix Constant blocks

Check Constant block usage

rec.Title = 'Check Constant block usage';
rec.TitleTips = ['Fail if Constant block value is a number; Pass if
'Constant block value is a letter'];
rec.setInputParametersLayoutGrid([1 1]);
inputParaml = ModelAdvisor.InputParameter;
inputParaml.Name = 'Text entry example';
inputParaml.Value='Varim';
inputParaml.Type='String’;
inputParaml.Description="'sample tooltip';
inputParaml.setRowSpan([1l 1]);
inputParaml.setColSpan([1l 1]);
rec.setInputParameters({inputParaml});

Action

myAction.Name='Fix Constant blocks';
myAction.Description=['Click the button to update all blocks with'...
'Text entry example'];

The Model Advisor box has a Fix Constant blocks button in the Action section of
the Model Advisor dialog box.

In the Model Advisor dialog box, enter a nonnumeric value in the Text entry
example parameter field in. In this example, the value is VarNm.

Click Fix Constant blocks. The Const 1 Constant block value changes from 1 to
the nonnumeric value that you entered. The Result section of the dialog box lists the
Old Value and New Value of the Const 1 block.

7-13

7 Create Model Advisor Checks

7-14

The following commands in the sl _customization.m file create the right pane in
the Model Advisor.

Action
Click the button to update all blocks withText entry example

Fix Constant blocks

Result:

example3 qs/Const 1 1 VarNm

Action
ft = ModelAdvisor.FormatTemplate('TableTemplate');

ft.setColTitles({'Block','0ld Value', 'New Value'})

for inx=l:size(blk with value)
oldVal = get param(blk with value{inx}, 'Value');
ft.addRow({blk with value{inx},oldVal, textEntryEx});
set param(blk with value{inx}, 'Value', textEntryEx);

end

13 [n the Model Advisor dialog box, click Run This Check. Both constant blocks now
pass the check.

Create Customized Pass/Fail Check with Detailed Result
Collections

This example shows how to create a Model Advisor check whose results are collected into
a group, such as blocks in a subsystem that violate a check. When a check is not violated,
the results contain the check description and result status. When a check is violated, the
results contain the check description, result status, and the recommended action to fix
the issue. This method is recommended when creating custom Model Advisor checks.

You can review results in the Model Advisor by selecting:

* View By > Recommended Action — When a check is violated, this view shows a list
of model elements that violate the check. When there is no violation, this view
provides a brief description stating that the check was not violated.

* View By > Subsystem — This view shows a table of model elements that violate the
check, organized by model or subsystem (when applicable).

Create and Add Custom Checks - Basic Examples

View By > Block — This view provides a list of check violations for each block.

When a check does not pass, results include a hyperlink to each model element that
violates the check. Use these hyperlinks to easily locate areas in your model or
subsystem.

To create a customized check with detailed result presented as a collection:

1

In your working folder, update the s1 _customization.m file as shows in the
example. This file contains three functions specific for creating a check whose results
are presented on the Model Advisor as a collection:

* defineModelAdvisorChecks — Defines the check and fix actions. In this
function, the callback style is 'DetailStyle’, which is the Model Advisor format
template that presents the results as a collection in the Model Advisor.

* SampleNewCheckStyleCallback — Creates the check callback function that
finds blocks whose name is not located below the block. The function uses name
and value pairs to gather the results into collections. See “Check Callback
Function for Detailed Result Collections” on page 7-63.

* sampleActionCBO — Creates the fix for blocks whose name is not located below
the block. In this example, it moves the name below the block. See “Action
Callback Function for Detailed Result Collections” on page 7-66.

function sl customization(cm)

o°

% Register custom checks
cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

% Define Model Advisor check "Check whether block names appear

% below blocks".

function defineModelAdvisorChecks

mdladvRoot = ModelAdvisor.Root;

rec = ModelAdvisor.Check('com.mathworks.sample.Check0"');

rec.Title = 'Check whether block names appear below blocks
(recommended check style)';

rec.TitleTips = 'Example new style callback (recommended
check style)';

rec.setCallbackFcn(@SampleNewCheckStyleCallback, 'None',
'DetailStyle');

% set fix operation

myAction0® = ModelAdvisor.Action;

myAction0.setCallbackFcn(@sampleActionCBO);

myAction0O.Name='Make block names appear below blocks';

myAction0.Description='Click the button to place block
names below blocks';

7-15

7 Create Model Advisor Checks

7-16

rec.setAction(myAction0);
mdladvRoot.publish(rec, 'Demo'); % publish check into Demo group.

% Callback function for check "Check whether block names appear
% below blocks".
function SampleNewCheckStyleCallback(system, Check0Obj)
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system); % get object
% find all blocks whose name does not appear below blocks
violationBlks = find system(system, 'Type','block',...
'NamePlacement', 'alternate’, ...
'ShowName', 'on');
if isempty(violationBlks)
ElementResults = ModelAdvisor.ResultDetail;
ElementResults.IsInformer = true;
ElementResults.Description = 'Identify blocks where the name is
not displayed below the block.';
ElementResults.Status = 'All blocks have names displayed below
the block."';
mdladvObj.setCheckResultStatus(true);
else
ElementResults(1,numel(violationBlks))=ModelAdvisor.ResultDetail;
for i=1:numel(ElementResults)
ElementResults(i).setData(violationBlks{i});
ElementResults(i).Description = 'Identify blocks where the
name is not displayed below the block.';
ElementResults(i).Status = 'The following blocks have names
that do not display below the blocks:';
ElementResults(i).RecAction = 'Change the location such that
the block name is below the block.';
end
mdladvObj.setCheckResultStatus(false);
mdladvObj.setActionEnable(true);
end
CheckObj.setResultDetails (ElementResults);

% Action callback function for check "Check whether block names
% appear below blocks".
function result = sampleActionCBO(taskobj)
mdladvObj = taskobj.MAObj;
checkObj = taskobj.Check;
resultDetailObjs = checkObj.ResultDetails;
for i=1l:numel(resultDetailObjs)
% take some action for each of them
block=Simulink.ID.getHandle(resultDetailObjs(i).Data);
set param(block, 'NamePlacement', 'normal');
end
result = ModelAdvisor.Text('Changed the location such that the
block name is below the block.');
mdladvObj.setActionEnable(false);

Close the Model Advisor and your model if either are open.
In the MATLAB command window, enter:

Create and Add Custom Checks - Basic Examples

Advisor.Manager.refresh customizations

From the MATLAB window, open model sldemo fuelsys.

In the Simulink model window:

* In the top model, right-click the Engine Speed block and select Rotate & Flip >
Flip Block Name.

* Openthe fuel rate control subsystem. Right-click the
validate sample time block and select Rotate & Flip > Flip Block Name.

Return to the top model and save as example sldemo fuelsys.

In the Modeling tab, select Model Advisor. A System Selector — Model Advisor
dialog box opens. Click OK. The Model Advisor opens.

In the left pane, select By Product > Demo > Check whether block names
appear below blocks.

Note If the By Product folder is not displayed in the Model Advisor window, select
SettingsPreferencesShow By Product Folder.

Select Run This Check. The Model Advisor check fails for the blocks.
Review the results by selecting one of the View by options.

7-17

7 Create Model Advisor Checks

7-18

The report provides a recommended action for each check. You can click the
hyperlink path to open the violating block in the model editor. For example,

Check whether block names appear below blocks (recommended check style)

Analysis
Example new style callback (recommended check style)

Run This Check

Result: /B Warning View by | Subsystem

Identify blocks where the name is not displayed below the block.

The following blocks have names that do not display below the blocks:

Subsvstem Block Path
example sldemo_fuelsys ../ Throttle Angle Fault Switch
example sldemo fuelsys/fuel rate control/fuel rate control/validate sample time

Recommended Action
Change the location such that the block name is below the block.

Action

Click the button to place block names below blocks

Make block names appear below blocks

The following commands in the sl _customization.m file create the right pane in

the Model Advisor.

Check title and subtitle

rec.Title = 'Check whether block names appear below blocks
(recommended check style)';

rec.TitleTips = 'Example new style callback (recommended
check style)';

Result

ElementResults(i).Description = 'Identify blocks where the name is
not displayed below the block.';

ElementResults(i).Status = 'The following blocks have names that do
not display below the blocks:';

Create and Add Custom Checks - Basic Examples

ElementResults(i).RecAction = 'Change the location such that the block
name is below the block.';

Action

myAction0O.Name='Make block names appear below blocks';

myAction0.Description="'Click the button to place block names
below blocks';

10 Follow the recommended action for fixing the violating blocks by using one of these

methods:

* Update each violation individually by double-clicking the hyperlink to open the
block. Right-click the block and select Rotate & Flip > Flip Block Name.

* Select the Make block names appear below blocks button. The Model Advisor
automatically fixes the issues in the model. Notice that the button is greyed out
after the violations are fixed.

11 Save the model and rerun the Model Advisor check. The check passes.

Check whether block names appear below blocks (recommended check style)
Analysis

Example new style callback (recommended check style)

Run This Check

Result: a Passed View by | Recommended Action ~

Identity blocks where the name is not displaved below the block.

All blocks have names displayed below the block.

The following commands in the s1_customization.m file create the right pane in
the Model Advisor.

Result

ElementResults.Description = 'Identify blocks where the name is not
displayed below the block.';

ElementResults.Status = 'All blocks have names displayed below the block."';

7-19

7 Create Model Advisor Checks

7-20

See Also

ModelAdvisor.FormatTemplate | ModelAdvisor.Check |
ModelAdvisor.Check.CallbackContext | ModelAdvisor.FormatTemplate

More About

“Register Checks” on page 7-42

“Define Check Input Parameters” on page 7-51

“Check Callback Function for Detailed Result Collections” on page 7-63

“Action Callback Function for Detailed Result Collections” on page 7-66

“Define, Configure, and Activate Variants” (Simulink)

“Create and Validate Variant Configurations” (Simulink)

“Represent Subsystem and Variant Models in Generated Code” (Embedded Coder)
“Define the Compile Option for Custom Checks” on page 7-72

Create Check for Model Configuration Parameters

Create Check for Model Configuration Parameters

To verify the configuration parameters for your model, you can create a configuration
parameter check.

Decide which configuration parameter settings to use for your model. If desired, review
the modelling guidelines:

* MathWorks Automotive Advisory Board (MAAB) Control Algorithm Modeling
Guidelines (Simulink)
* High-Integrity System Modeling Guidelines (Simulink)
* Code Generation Modeling Guidelines (Simulink)
1 Create an XML data file containing the configuration parameter settings you want to
check. You can use

Advisor.authoring.generateConfigurationParameterDataFile or
manually create the file yourself.

2 Register the model configuration parameter check using an sl _customization.m
file.

3 Run the check on your models.

Create a Data File for a Configuration Parameter Check

This example shows how to create a data file that specifies configuration parameter
values in the Diagnostics pane. A custom check warns when the configuration
parameters values do not match the values defined in the data file.

At the command prompt, type vdp to open the van der Pol Equation model.

Right-click in the model window and select Model Configuration Parameters. In the
Diagnostics pane, set the configuration parameters as follows:

* Algebraic loop to none
* Minimize algebraic loop to error
* Block Priority Violation to error

Use the Advisor.authoring.generateConfigurationParameterDataFile
function to create a data file specifying configuration parameter constraints in the

7-21

matlab: vdp

7 Create Model Advisor Checks

7-22

Diagnostics pane. Also, to create a check with a fix action, set FixValue to true. At the
command prompt, type:

model="vdp';

dataFileName = 'ex DataFile.xml';
Advisor.authoring.generateConfigurationParameterDataFile(dataFileName, ...
model, 'Pane', 'Diagnostics', 'FixValues', true);

In the Command Window, select ex DataFile.xml. The data file opens in the MATLAB
editor.

* The Minimize algebraic loop (ArtificialAlgebraiclLoopMsg) configuration
parameter tagging specifies a value of error with a fixvalue of error. When you
run the configuration parameter check using ex DataFile.xml, the check fails if the
Minimize algebraic loop setting is not error. The check fix action modifies the
setting to error.

* The Block Priority Violation (BlockPriorityViolationMsg) configuration
parameter tagging specifies a value of error with a fixvalue of error. When you
run the configuration parameter check using ex DataFile.xml, the check fails if the
Block Priority Violation setting is not error. The check fix action modifies the
setting to error.

In ex DataFile.xml, edit the Algebraic loop (AlgebraicLoopMsg) parameter tagging
so that the check warns if the value is none. Because you are specifying a configuration
parameter that you do not want, you need a NegativeModelParameterConstraint.
Also, to create a subcheck that does not have a fix action, remove the line with
<fixvalue> tagging. The tagging for the configuration parameter looks as follows:

<!-- Algebraic loop: (AlgebraicLoopMsg)-->
<NegativeModelParameterConstraint>
<parameter>AlgebraicLoopMsg</parameter>
<value>none</value>
</NegativeModelParameterConstraint>

In ex DataFile.xml, delete the lines with tagging for configuration parameters that
you do not want to check. The data file ex DataFile.xml provides tagging only for
Algebraic loop, Minimize algebraic loop, and Block Priority Violation. For example,
ex_DataFile.xml looks similar to:

<?xml version="1.0" encoding="utf-8"7>
<customcheck xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://www.w3schools.com
MySchema.xsd">

<checkdata>

Create Check for Model Configuration Parameters

<!-- Algebraic loop: (AlgebraiclLoopMsg)-->
<NegativeModelParameterConstraint>
<parameter>AlgebraiclLoopMsg</parameter>
<value>none</value>
</NegativeModelParameterConstraint>
<!--Minimize algebraic loop: (ArtificialAlgebraicLoopMsg)-->
<PositiveModelParameterConstraint>
<parameter>ArtificialAlgebraicLoopMsg</parameter>
<value>error</value>
<fixvalue>error</fixvalue>
</PositiveModelParameterConstraint>
<!--Block priority violation: (BlockPriorityViolationMsg)-->
<PositiveModelParameterConstraint>
<parameter>BlockPriorityViolationMsg</parameter>
<value>error</value>
<fixvalue>error</fixvalue>
</PositiveModelParameterConstraint>
</checkdata>
</customcheck>

Verify the data syntax with Advisor.authoring.DataFile.validate. At the
command prompt, type:

dataFile = 'myDataFile.xml';
msg = Advisor.authoring.DataFile.validate(dataFile);

if isempty(msg)

disp('Data file passed the XSD schema validation.');
else

disp(msg);
end

Create Check for Diagnostics Pane Model Configuration
Parameters

This example shows how to create a check for Diagnostics pane model configuration
parameters using a data file and an s1_customization.m file. First, you register the
check using an s1_customization.m file. Using ex DataFile.xml, the check warns
when:

* Algebraic loop is set to none

* Minimize algebraic loop is not set to error

7-23

7 Create Model Advisor Checks

* Block Priority Violation is not set to error

The check fix action modifies the Minimize algebraic loop and Block Priority
Violation parameter settings to error.

The check uses the ex DataFile.xml data file created in “Create a Data File for a
Configuration Parameter Check” on page 7-21.

Close the Model Advisor and your model if either are open.

Use the following sl customization.m file to specify and register check Example:
Check model configuration parameters.

function sl customization(cm)

% register custom checks.
cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

% register items to factory group.
cm.addModelAdvisorTaskFcn(@defineModelAdvisorGroups);

%% defineModelAdvisorChecks
function defineModelAdvisorChecks

rec = ModelAdvisor.Check('com.mathworks.Checkl");
rec.Title = 'Example: Check model configuration parameters';
rec.setCallbackFcn(@(system) (Advisor.authoring.CustomCheck.checkCallback...
(system)), 'None', 'StyleOne');
rec.TitleTips = 'Example check for model configuration parameters';

% --- data file input parameters
rec.setInputParametersLayoutGrid([1 1]);

inputParaml = ModelAdvisor.InputParameter;

inputParaml.Name = 'Data File';

inputParaml.Value = 'ex DataFile.xml';

inputParaml.Type = 'String’;

inputParaml.Description = 'Name or full path of XML data file.';
inputParaml.setRowSpan([1 1]);

inputParaml.setColSpan([1 1]);
rec.setInputParameters({inputParaml});

% -- set fix operation

act = ModelAdvisor.Action;

act.setCallbackFcn(@(task) (Advisor.authoring.CustomCheck.actionCallback...
(task)));

act.Name = 'Modify Settings';

act.Description = 'Modify model configuration settings.';

rec.setAction(act);

mdladvRoot = ModelAdvisor.Root;
mdladvRoot.register(rec);

7-24

Create Check for Model Configuration Parameters

%% defineModelAdvisorGroups
function defineModelAdvisorGroups
mdladvRoot = ModelAdvisor.Root;

% --- sample factory group 1

rec = ModelAdvisor.FactoryGroup('com.mathworks.Test.factoryGroup');
rec.DisplayName='Example: My Group';
rec.addCheck('com.mathworks.Checkl"');

mdladvRoot.publish(rec);

Create the Example: Check model configuration parameters. At the command
prompt, enter:

Advisor.Manager.refresh customizations
At the command prompt, type vdp to open the van der Pol Equation model.

Right-click in the model window and select Model Configuration Parameters. In the
Diagnostics pane, set the configuration parameters as follows:

* Algebraic loop to none
* Minimize algebraic loop to warning
* Block Priority Violation to warning

In the Modeling tab, select Model Advisor to open the Model Advisor.

In the left pane, select By Task > Example: My Group > Example: Check model
configuration parameters. In the right pane, Data File is set to ex DataFile.xml.

Click Run This Check. The Model Advisor check warns that the configuration
parameters are not set to the values specified in ex DataFile.xml. For configuration
parameters with positive constraint tagging (PositiveModelParameterConstraint),
the recommended values are obtained from the value tagging. For configuration
parameters with negative constraint tagging (NegativeModelParameterConstraint),
the values not recommended are obtained from the value tagging.

* Algebraic loop (AlgebraicLoopMsg) - the ex DataFile.xml tagging does not
specify a fix action for AlgebraiclLoopMsg. The subcheck passes only when the
setting is not set to none.

* Minimize algebraic loop(ArtificialAlgebraicLoopMsg) - the
ex_ DataFile.xml tagging specifies a subcheck with a fix action for
ArtificialAlgebraicLoopMsg that passes only when the setting is error. The fix
action modifies the setting to error.

7-25

matlab: vdp

7 Create Model Advisor Checks

7-26

* Block priority violation (BlockPriorityViolationMsg) - the ex DataFile.xml
tagging specifies a subcheck with a fix action for BlockPriorityViolationMsg that
does not pass when the setting is warning. The fix action modifies the setting to
error.

In the Action section of the Model Advisor dialog box, click Modify Settings. Model
Advisor updates the configuration parameters for Block priority violation and
Minimize algebraic loop.

Run By Task > Example: My Group > Example: Check model configuration
parameters. The check warns because Algebraic loop is set to none.

In the right pane of the Model Advisor window, use the Algebraic loop
(AlgebraicLoopMsg) link to edit the configuration parameter. Set Algebraic loop to
warning or error.

Run By Task > Example: My Group > Example: Check model configuration
parameters. The check passes.

Data File for Configuration Parameter Check

You use an XML data file to create a configuration parameter check. To create the data
file, you can use Advisor.authoring.generateConfigurationParameterDataFile
or manually create the file yourself. The data file contains tagging that specifies check
behavior. Each model configuration parameter specified in the data file is a subcheck. The
structure for the data file is as follows:

<?xml version="1.0" encoding="utf-8"7?>
<customcheck xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xxsi:noNamespaceSchemaLocation="http://www.w3schools.com
MySchema.xsd">
<messages>
<Description>Description of check</Description>
<PassMessage>Pass message</PassMessage>
<FailMessage>Fail message</FailMessage>
<RecommendedActions>Recommended action</RecommendedActions>
</messages>
<checkdata>
<!--Command line name of configuration parameter-->
<PositiveModelParameterConstraint>
<parameter>Command-1line name of configuration parameter</parameter>
<value>Value that you want configuration parameter to have</value>
<fixvalue>Specify value for a fix action</fixvalue>
<dependson>ID of configuration parameter subcheck that must pass
before this subcheck runs</value>
</PositiveModelParameterConstraint>

Create Check for Model Configuration Parameters

<!-- Command line name of configuration parameter-->
<NegativeModelParameterConstraint>
<parameter>Command line name of configuration parameter</parameter>
<value>Value that you do not want configuration parameter to have</value>
<fixvalue>Specify value for a fix action</fixvalue>
<dependson>ID of configuration parameter subcheck that must pass
before this subcheck runs</value>
</NegativeModelParameterConstraint>
</checkdata>

</customcheck>

The <messages> tag contains:

Description - (Optional) Description of the check. Displayed in Model Advisor
window.

PassMessage - (Optional) Pass message displayed in Model Advisor window.
FailMessage - (Optional) Fail message displayed in Model Advisor window.

RecommendedActions - (Optional) Recommended actions displayed in Model Advisor
window when check does not pass.

Note The <messages> tag is optional.
Advisor.authoring.generateConfigurationParameterDataFile does not
generate <messages> tagging.

In the <checkdata> tag, the data file specifies two types of constraints:

PositiveModelParameterConstraint - Specifies the configuration parameter
setting that you want.

NegativeModelParameterConstraint - Specifies the configuration parameter
setting that you do not want.

Within the tag for each of the two types of constraints, for each configuration parameter
that you want to check, the data file has the following tags:

parameter - Specifies the configuration parameter that you want to check. The
tagging uses the command line name for the configuration parameter. For example:

<PositiveModelParameterConstraint>
<parameter>BlockPriorityViolationMsg</parameter>
</PositiveModelParameterConstraint>
<NegativeModelParameterConstraint>
<parameter>AlgebraiclLoopMsg</parameter>
</NegativeModelParameterConstraint>

7-27

7 Create Model Advisor Checks

7-28

value - Specifies the setting(s) for the configuration parameter. You can specify more
than one value tag.

When using PositiveModelParameterConstraint, value specifies the setting(s)
that you want for the configuration parameter. For

NegativeModelParameterConstraint, value specifies the setting(s) you that do
not want for the configuration parameter.

You can specify the value using a format in this table.

Type

Format

Example

Scalar value

<value>xyz</value>

In this example, constraint
NegativeModelParameterConstrain
t warns when the configuration
parameter settings for configuration
parameter is not error or none .

<NegattiveModelParameterConstraint>
<value>error</value>
<value>none</value>

</NegativeModelParameterConstraint>

Structure or
object

<value>
<paraml>xyz</param
<param2>yza</param
</value>

In this example, constraints
IPositiveModelParameterConstrain
2t warns when the configuration
parameter settings are not a valid
structure:

<PositiveModelParameterConstraint>
<value>
<double>a</double>
<single>b</single>
</value>
</PositiveModelParameterConstraint>

Create Check for Model Configuration Parameters

Type Format Example
Array <value> In this example, constraint
<element>value</elemegstiveModelParameterConstrain
<element>value</elef&pdrhs when the configuration
</value> parameter settings are an invalid array:
<NegativeModelParameterConstraint>
<value>
<element>A</element>
<element>B</element>
</value>
</NegativeModelParameterConstraint>
Structure |<value> In this example, constraint
Array <element> NegativeModelParameterConstrain
<paraml>xyz</ppf3fdrhs when the configuration
<param2>yza</pRramizeter settings are an invalid
</element>
S structure array:
<paraml>xyz</pafgid2: iy eModelParameterConstraint>
<param2>yza</param Zvalue>
</element> <elements
</value> <double>a</double>
<single>b</single>
</element>
<element>
<double>a</double>
<single>b</single>
</element>
</value>
</NegativeModelParameterConstraint>

fixvalue - (Optional) Specifies the setting
fix action.

to use when applying the Model Advisor

You can specify the fixvalue using a format in this table.

7-29

7 Create Model Advisor Checks

7-30

Type Format

Example

Scalar value |<fixvalue>xyz</fixva

Lugkn this example, the fix action tag

specifies the new configuration
parameter setting as warning.

<PositiveModelParameterConstraint>

<value>error</value>
<fixaction>warning</fixaction>
</PositiveModelParameterConstraint>

Structure or|<fixvalue>

</fixvalue>

object <paraml>xyz</param
<param2>yza</param

In this example, the fix action tag
Ispecifies the new configuration
2ﬁarameter setting for a structure.

<PositiveModelParameterConstraint>
<value>
<double>a</double>

<single>b</single>
</value>

<fixvalue>
<double>c</double>

<single>d</single>
</fixvalue>

</PositiveModelParameterConstraint>

Array <fixvalue>

<element>value</el
</fixvalue>

<element>value</el

In this example, the fix action tag
figsdifies the new configuration
Peffieter setting for an array.

<NegativeModelParameterConstraint>
<value>
<element>A</element>

<element>B</element>
</value>

<fixvalue>
<element>C</element>

<element>D</element>
</fixvalue>

</NegativeModelParameterConstraint>

Create Check for Model Configuration Parameters

Type Format Example
Structure |<fixvalue> In this example, the fix action tag
Array <element> specifies the new configuration
<paraml>xyz</pgfaftlfieter settings for a structure array.
<param2>yza</param2>
</element> <NegativeModelParameterConstraint>
<element> <value>
<paraml>xyz</paraml> <element>
<param2>yza</param2> <double>a</double>
</element> <single>b</single>
</fixvalue> </element>
<element>
<double>a</double>
<single>b</single>
</element>
</value>
<fixvalue>
<element>
<double>c</double>
<single>d</single>
</element>
<element>
<double>c</double>
<single>d</single>
</element>
</fixvalue>
</NegativeModelParameterConstraint>

* dependson - (Optional) Specifies a prerequisite subcheck.

In this example, dependson specifies that configuration parameter subcheck ID B
must pass before configuration parameter subcheck ID A runs.

<PositiveModelParameterConstraint id="ID A">
<dependson>ID B</value>
</PostitiveModelParameterConstraint>
Data file tagging specifying a configuration parameter

The following tagging specifies a subcheck for configuration parameter SolverType. If
the configuration parameter is set to Fixed-Step, the subcheck passes.

<PositiveModelParameterConstraint id="ID A">
<parameter>SolverType</parameter>

7-31

7 Create Model Advisor Checks

<value>Fixed-step</value>
</PostitiveModelParameterConstraint>

Data file tagging specifying configuration parameter with fix action

The following tagging specifies a subcheck for configuration parameter
AlgebraicLoopMsg. If the configuration parameter is set to none or warning, the
subcheck passes. If the subcheck does not pass, the check fix action modifies the
configuration parameter to error.

<PositiveModelParameterConstraint id="ID A">
<parameter>AlgebraicLoopMsg</parameter>
<value>none</value>
<value>warning</value>
<fixvalue>error</value>

</PostitiveModelParameterConstraint>

Data file tagging specifying an array type configuration parameter

<PositiveModelParameterConstraint id="A">
<parameter>ReservedNameArray</parameter>
<value>
<element>A</element>
<element>B</element>
</value>
<value>
<element>A</element>
<element>C</element>
</value>
</PositiveModelParameterConstraint>

Data file tagging specifying a structure type configuration parameter with fix
action

<PositiveModelParameterConstraint id="A">

<parameter>ReplacementTypes</parameter>

<value>
<double>a</double>
<single>b</single>

</value>

<value>
<double>c</double>
<single>b</single>

</value>

<fixvalue>

7-32

Create Check for Model Configuration Parameters

<double>a</double>
<single>b</single>
</fixvalue>
</PositiveModelParameterConstraint>

Data file tagging specifying configuration parameter with fix action and
prerequisite check

The following tagging specifies a subcheck for configuration parameter SolverType. The
subcheck for SolverType runs only after the ID B subcheck passes. If theID B
subcheck does not pass, the subcheck for SolverType does not run. The Model Advisor
reports that the prerequisite constraint is not met.

If the SolverType subcheck runs and SolverType is set to Fixed-Step, the
SolverType subcheck passes. If the subcheck runs and does not pass, the check fix
action modifies the configuration parameter to Fixed-Step.

<PositiveModelParameterConstraint id="ID A">
<parameter>SolverType</parameter>
<value>Fixed-step</value>
<fixvalue>Fixed-step</value>
<dependson>ID B</value>

</PostitiveModelParameterConstraint>

Data file tagging specifying unwanted configuration parameter

The following tagging specifies a subcheck for configuration parameter SolverType. The
subcheck does not pass if the configuration parameter is set to Fixed-Step.

<NegativeModelParameterConstraint id="ID A">
<parameter>SolverType</parameter>
<value>Fixed-step</value>

</NegativeModelParameterConstraint>

Data file tagging specifying unwanted configuration parameter with fix action

The following tagging specifies a subcheck for configuration parameter SolverType. If
the configuration parameter is set to Fixed-Step, the subcheck does not pass . If the
subcheck does not pass, the check fix action modifies the configuration parameter to
Variable-Step.

<NegativeModelParameterConstraint id="ID A">

<parameter>SolverType</parameter>
<value>Fixed-step</value>

7-33

7 Create Model Advisor Checks

7-34

<fixvalue>Variable-step</value>
</NegativeModelParameterConstraint>

Data file tagging specifying unwanted configuration parameter with fix action
and prerequisite check

The following tagging specifies a check for configuration parameter SolverType. The
subcheck for SolverType runs only after the ID B subcheck passes. If theID B
subcheck does not pass, the subcheck for SolverType does not run. The Model Advisor
reports that the prerequisite constraint is not met.

If the SolverType subcheck runs and SolverType is set to Fixed-Step, the subcheck
does not pass. The check fix action modifies the configuration parameter to Variable-
Step.

<NegativeModelParameterConstraint id="ID A">
<parameter>SolverType</parameter>
<value>Fixed-step</value>
<fixvalue>Variable-step</value>
<dependson>ID B</value>

</NegativeModelParameterConstraint>

See Also

Advisor.authoring.CustomCheck.actionCallback |
Advisor.authoring.CustomCheck.checkCallback |
Advisor.authoring.DataFile.validate |
Advisor.authoring.generateConfigurationParameterDataFile

More About
. “Organize and Deploy Model Advisor Checks”

Define Checks for Supported or Unsupported Blocks and Parameters

Define Checks for Supported or Unsupported Blocks and
Parameters

For modeling guidelines that require you to use a subset of block or parameter values,
you can create Model Advisor checks in which you specify these constraints:

* Supported or unsupported block parameter values

* Supported or unsupported model parameter values

* Supported or unsupported blocks

* Check for whether blocks or parameters meet a combination of constraints

You can also create constraints that check for prerequisite constraints before checking

the actual constraint. You can check your model against these constraints as you edit or
run the checks interactively after you complete your model design.

Example
The sldemo_bounce model simulates a ball bouncing on Earth. In this example, you

create two Model Advisor checks consisting of constraints. Then, check your model
against those constraints.

7-35

7 Create Model Advisor Checks

Bouncing Ball Model
-8.81 > x *=—]
4 1 f Position -

Gravitational 5_2
acceleration . (1] o e >3
Veloecity
Initial Sacond-Order
Walocity Integratar

0.8 I

Coeafficient of
Restitution

Copyright 2004-2013 The MathWarks, Inc.

Create Block Parameter Constraints

1 Create these block parameter constraints:

cl=Advisor.authoring.PositiveBlockParameterConstraint;
cl.ID="ID 1°';

cl.BlockType="Gain";

cl.ParameterName='Gain';
cl.SupportedParameterValues={'-.7'};
cl.ValueOperator='eq';

c2=Advisor.authoring.NegativeBlockParameterConstraint;
c2.ID="ID 2';

c2.BlockType="InitialCondition";
c2.ParameterName='Value';
c2.UnsupportedParameterValues={'0'};
c2.ValueOperator='le';

Constraint c1 specifies that a Gain block must have a value equal to - .7. Constraint
c2 specifies that the Initial Condition block must have a value less than or equal to
zero.

7-36

Define Checks for Supported or Unsupported Blocks and Parameters

Create this positive model parameter constraint.

c3=Advisor.authoring.PositiveModelParameterConstraint;
c3.ID="ID 3';

c3.ParameterName='SolverType"';
c3.SupportedParameterValues={'Variable-step'};

Constraint c3 specifies that the Solver parameter must be equal to Variable-step.
Create this positive block type constraint:

c4=Advisor.authoring.PositiveBlockTypeConstraint;
c4.ID="ID 5°';
sl=struct('BlockType', 'Constant', 'MaskType',"'");
s2=struct('BlockType', 'Subsystem', 'MaskType',"'");
s3=struct('BlockType', 'InitialCondition', 'MaskType',"'");
s4=struct('BlockType', 'Gain', 'MaskType',"'");
s5=struct('BlockType', 'Memory', 'MaskType',"'"');
sb6=struct('BlockType', 'SecondOrderIntegrator', 'MaskType',"'"');
s7=struct('BlockType', 'Terminator', 'MaskType',"'");
c4.SupportedBlockTypes={sl;s2;s3;s4;s5;s6;s7;};
c4.addPreRequisiteConstraintID('ID 3');

Constraint c4 specifies the supported blocks. Constraint c3 is a prerequisite to c4
meaning that the Model Advisor only checks c4 if c3 passes.

Create a data file that contains these constraints. This data file corresponds to one
Model Advisor check.

Advisor.authoring.generateBlockConstraintsDataFile(...
'sldemo constraints 1.xml','constraints',{cl,c2,c3,c4});

The data file contains tagging specifically for constraints.

<?xml version="1.0" encoding="utf-8"7?>
<customcheck>
<checkdata>
<PositiveBlockParameterConstraint BlockType="Gain" id="ID 1">
<parameter type="string">Gain</parameter>
<value>-.7</value>
<operator>eq</operator>
</PositiveBlockParameterConstraint>
<NegativeBlockParameterConstraint BlockType="InitialCondition" id="ID_2">
<parameter type="string">Value</parameter>
<value>0</value>
<operator>le</operator>
</NegativeBlockParameterConstraint>
<PositiveModelParameterConstraint id="ID_3">
<parameter type="enum">SolverType</parameter>
<value>Variable-step</value>
</PositiveModelParameterConstraint>
<PositiveBlockTypeConstraint id="ID 5">

7-37

7 Create Model Advisor Checks

7-38

<BlockType MaskType="">Constant</BlockType>
<BlockType MaskType="">Subsystem</BlockType>
<BlockType MaskType="">InitialCondition</BlockType>
<BlockType MaskType="">Gain</BlockType>
<BlockType MaskType="">Memory</BlockType>
<BlockType MaskType="">SecondOrderIntegrator</BlockType>
<BlockType MaskType="">Terminator</BlockType>
<dependson>ID_3</dependson>
</PositiveBlockTypeConstraint>
<CompositeConstraint>
<ID>ID_ 1</ID>
<ID>ID_ 2</ID>
<ID>ID 5</ID>
<operator>and</operator>
</CompositeConstraint>
</checkdata>
</customcheck>

Note For model configuration parameter constraints, use the
Advisor.authoring.generateBlockConstraintsDataFile method only when
specifying model configuration parameter constraints as prerequisites to block
constraints or as part of a composite constraint consisting of block and model
configuration parameter constraints. For other cases, use the

Advisor authoring.generateConfigurationParameterDatafile method.

Create two block parameter constraints and a composite constraint.

ccl=Advisor.authoring.PositiveBlockParameterConstraint;
ccl.ID="ID ccl';

ccl.BlockType='SecondOrderIntegrator’;
ccl.ParameterName="'UpperLimitX";
ccl.SupportedParameterValues={'inf'};
ccl.ValueOperator='eq';

cc2=Advisor.authoring.PositiveBlockParameterConstraint;
cc2.ID="1ID cc2';

cc2.BlockType='SecondOrderIntegrator’;
cc2.ParameterName='LowerLimitX";
cc2.SupportedParameterValues={'0.0"};
cc2.ValueOperator='eq';

cc=Advisor.authoring.CompositeConstraint;
cc.addConstraintID('ID ccl');
cc.addConstraintID('ID cc2');
cc.CompositeOperator="and';

Constraint cc1 specifies that for a Second-Order Integrator block, the Upper limit x
parameter must have a value equal to inf. Constraint cc2 specifies that for a

Define Checks for Supported or Unsupported Blocks and Parameters

Second-Order Integrator block, the Lower limit x parameter must have a value
equal to zero. Constraint cc specifies that for this check to pass, both ccl and cc2
have to pass.

Create a data file that contains these constraints. This data file corresponds to a
second Model Advisor check.

Advisor.authoring.generateBlockConstraintsDataFile(
'sldemo constraints 2.xml', 'constraints',{ccl,cc2,cc});

Create Model Advisor Checks from Constraints

1

To specify and register these checks, use this sl _customization.m file.
function sl customization(cm)

% register custom checks.
cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

% register items to factory group.

cm.addModelAdvisorTaskFcn(@defineModelAdvisorGroups);

% defineModelAdvisorChecks
function defineModelAdvisorChecks

% checkl
rec = Advisor.authoring.createBlockConstraintCheck('mathworks.check 0001");
rec.Title = 'Examplel: Check block parameter constraints';

rec.setCallbackFcn(@(system) (Advisor.authoring.CustomCheck.checkCallback.. .
(system)), 'None', 'StyleOne');
rec.TitleTips = 'Example check block parameter constraints';

% --- data file input parameters
rec.setInputParametersLayoutGrid([1 1]);
inputParaml = ModelAdvisor.InputParameter;
inputParaml.Name = 'Data File';
inputParaml.Value = 'sldemo constraints 1.xml';
inputParaml.Type = 'String’;
inputParaml.Description = 'Name or full path of XML data file.';
inputParaml.setRowSpan([1 1]);
inputParaml.setColSpan([1 1]);
rec.setInputParameters({inputParaml});
rec.SupportExclusion = false;
rec.SupportLibrary = true;

% check2
recl = Advisor.authoring.createBlockConstraintCheck('mathworks.check 0002");
recl.Title = 'Example2: Check block parameter constraints';

recl.setCallbackFcn(@(system) (Advisor.authoring.CustomCheck.checkCallback. ..
(system)), 'None', 'StyleOne');
recl.TitleTips = 'Example check block parameter constraints';

% --- data file input parameters
recl.setInputParametersLayoutGrid([1 1]);
inputParaml = ModelAdvisor.InputParameter;
inputParaml.Name = 'Data File';

7-39

7 Create Model Advisor Checks

7-40

inputParaml.Value = 'sldemo constraints 2.xml';
inputParaml.Type = 'String';
inputParaml.Description = 'Name or full path of XML data file.';
inputParaml.setRowSpan([1 1]);
inputParaml.setColSpan([1 1]);
recl.setInputParameters({inputParaml});
recl.SupportExclusion = false;
recl.SupportLibrary = true;

mdladvRoot = ModelAdvisor.Root;
mdladvRoot.register(rec);
mdladvRoot.register(recl);

%% defineModelAdvisorGroups
function defineModelAdvisorGroups
mdladvRoot = ModelAdvisor.Root;

% --- sample factory group 1

rec = ModelAdvisor.FactoryGroup('com.mathworks.Test.factoryGroup');
rec.DisplayName='Example: My Group';

rec.addCheck('mathworks.check 0001");

rec.addCheck('mathworks.check 0002");

mdladvRoot.publish(rec);

You must use the Advisor.authoring.createBlockConstraintCheck function
to create the ModelAdvisor.Check object and specify the constraint data file as an
input parameter to this object.

2 At the command prompt, type create the Examplel: Check block parameter
constraints and Example2: Check block parameter constraints checks by typing
this command:

Advisor.Manager.refresh customizations
At the command prompt, type sldemo bounce.
4 In the Modeling tab, select Model Advisor to open the Model Advisor.

In the left pane, select By Task > Example: My Group. For each check, in the right
pane, the Data File parameters are set to the data files that you previously created.

6 Click Run Selected Checks.

The Examplel: Check block parameter constraints check produces a warning
because the Gain block has a value of -0.8 not -0.7. The Example2: Check block
parameter constraints check passes because the Second-Order Integrator block
meets both constraints.

You can use edit-time checking for custom checks that define block and parameter
constraints. To enable edit-time checking, in the Model Advisor Configuration Editor,
select the checks that contain the constraints. For more information on edit-time
checking, see “Check Model Compliance by Using the Model Advisor” on page 3-2.

See Also

See Also

Advisor.authoring.generateBlockConstraintsDataFile |
NegativeBlockParameterConstraint | NegativeBlockTypeConstraint |
NegativeModelParameterConstraint | PositiveBlockParameterConstraint |
PositiveBlockTypeConstraint | PositiveModelParameterConstraint

7-41

7 Create Model Advisor Checks

Register Checks

7-42

Create sl _customization Function

To add checks to the Model Advisor, on your MATLAB path, in the sl _customization.m
file, create the s1 customization() function.

Tip

* You can have more than one sl customization.m file on your MATLAB path.

* Do not place an s1_customization.m file that customizes checks and folders in the
Model Advisor in your root MATLAB folder or its subfolders, except for the

matlabroot/work folder. Otherwise, the Model Advisor ignores the customizations
that the file specifies.

The s1_customization function accepts one argument, a customization manager
object, as in this example:

function sl customization(cm)

The customization manager object includes methods for registering custom checks. Use
these methods to register customizations specific to your application, as described in the
following sections.

Register Checks
To register custom checks, the customization manager includes the following method:
* addModelAdvisorCheckFcn (@checkDefinitionFcn)

Registers the checks that you define in checkDefinitionFcn to the By Product
folder of the Model Advisor.

The checkDefinitionFcn argument is a handle to the function that defines custom
checks that you want to add to the Model Advisor as instances of the
ModelAdvisor.Check class.

This example shows how to register custom checks:

See Also

function sl customization(cm)

% register custom checks
cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

Note If you add custom tasks and folders within the s1_customization.m file, include
methods for registering the tasks and folders in the s1 customization function.

See Also
ModelAdvisor.Check

Related Examples
. Registering Tasks and Folders on page 8-13

More About
. “Define Custom Checks” on page 7-47

7-43

7 Create Model Advisor Checks

Define Startup and Post-Execution Actions Using
Process Callback Functions

The process callback function is an optional function that you use to configure the Model
Advisor and process check results at run time. The process callback function specifies
actions that the software performs at different stages of Model Advisor execution:

* configure stage: The Model Advisor executes configure actions at startup, after
checks and tasks have been initialized. At this stage, you can customize how the Model
Advisor constructs lists of checks and tasks by modifying Visible, Enable, and
Va'lue properties. For example, you can remove, rename, and selectively display
checks and tasks in the By Task folder.

* process_results stage: The Model Advisor executes process results actions
after checks complete execution. You can specify actions to examine and report on the
results returned by check callback functions.

Process Callback Function Arguments

The process callback function uses the following arguments.

Argument 1/0 Type Data Type Description

stage Input Enumeration Specifies the stages at which
process callback actions are
executed. Use this argument in
a switch statement to specify
actions for the stages
configure and

process results.

system Input Path Model or subsystem that the
Model Advisor analyzes.

checkCellArray |Input/Output Cell array As input, the array of checks
constructed in the check
definition function.

As output, the array of checks
modified by actions in the
configure stage.

7-44

Define Startup and Post-Execution Actions Using Process Callback Functions

Argument 1/0 Type Data Type Description

taskCellArray Input/Output Cell array As input, the array of tasks
constructed in the task
definition function.

As output, the array of tasks
modified by actions in the
configure stage.

Process Callback Function

This example shows a process callback function that specifies actions in the configure
stage that makes only custom checks visible. In the process results stage, this
function displays information at the command prompt for checks that do not pass.

% Process Callback Function
% Defines actions to execute at startup and post-execution
function [checkCellArray taskCellArray] =
ModelAdvisorProcessFunction(stage, system, checkCellArray, taskCellArray)
switch stage
% Specify the appearance of the Model Advisor window at startup
case 'configure'
for i=1:length(checkCellArray)
% Hide all checks that do not belong to custom folder
if isempty(strfind(checkCellArray{i}.ID, 'mathworks.example'))
checkCellArray{i}.Visible = false;
checkCellArray{i}.Value = false;
end
end
% Specify actions to perform after the Model Advisor completes execution
case 'process results'
for i=1:length(checkCellArray)
% Print message if check does not pass
if checkCellArray{i}.Selected && (strcmp(checkCellArray{i}.Title,
'Check Simulink window screen color'))
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);
% Verify whether the check was run and if it failed
if mdladvObj.verifyCheckRan(checkCellArray{i}.ID)
if ~mdladvObj.getCheckResultStatus(checkCellArray{i}.ID)
% Display text in MATLAB Command Window
disp(['Example message from Model Advisor Process'...
' callback.']);
end
end
end
end
end

7-45

7 Create Model Advisor Checks

7-46

Tips for Using the Process Callback Function in a
sl_customization File

Observe the following tips when using process callback function ina sl customization
file:

If you delete a check in the Model Advisor Configuration Editor, you can retrieve a
copy of it from the Model Advisor Check Browser. However, if you use a process
callback function in a s1_customization file to hide checks and folders, the Model
Advisor Configuration Editor and Model Advisor Check Browser do not display the
hidden checks and folders. For a complete list of checks and folders, remove process
callback functions and update the Simulink environment.

The Model Advisor registers only one process callback function. If you have more than
one sl _customization.m file on your MATLAB path, the Model Advisor registers
the process callback function from the sl customization.m file that has the highest
priority.

If you add process callbacks within the s1 customization.m file, include methods
for registering the process callbacks in the s1 customization function.

See Also

“Create Model Advisor Checks Workflow” on page 7-2 | “Register Checks” on page 7-42 |
“Organize Customization File Checks and Folders” on page 8-12 | “Organize Checks and
Folders Using the Model Advisor Configuration Editor” on page 8-5

Define Custom Checks

Define Custom Checks

About Custom Checks

You can create a custom check to use in the Model Advisor. Creating custom checks
provides you with the ability to specify which conditions and configuration settings the
Model Advisor reviews.

You define custom checks in one or more functions that specify the properties of each
instance of the ModelAdvisor.Check class. Define one instance of this class for each
custom check that you want to add to the Model Advisor, and register the custom check.

Tip You can add a check to multiple folders by creating a task.

Contents of Check Definitions

When you define a Model Advisor check, it contains the information listed in the following

table.

Contents Description

Check ID (required) Uniquely identifies the check. The Model Advisor uses
this id to access the check.

Handle to check callback Function that specifies the contents of a check.

function (required)

Check name (recommended) Creates a name for the check that the Model Advisor

displays.

Model compiling (optional) Specifies whether the model is compiled for check
analysis.

Check properties (optional) Creates a user interface with the check. When adding

checks as tasks, the Model Advisor uses the task
properties instead of the check properties, except for
Visible and LicenseName.

Input Parameters (optional) Adds input parameters that request input from the user.
The Model Advisor uses the input to perform the check.

Action (optional) Adds fixing action.

7-47

7 Create Model Advisor Checks

7-48

Contents Description
Explore Result button Adds the Explore Result button that the user clicks to
(optional) open the Model Advisor Result Explorer.

Display and Enable Checks

You can create a check and specify how it appears in the Model Advisor. You can define
when to display a check, or whether a user can select or clear a check using the
Visible, Enable, and Value properties of the ModelAdvisor.Check class.

Note When adding checks to the Model Advisor as tasks, specify these properties in the
ModelAdvisor.Task class. If you specify the properties in both ModelAdvisor.Check
and ModelAdvisor.Task, the ModelAdvisor.Task properties take precedence, except

for the Visible and LicenseName properties.

The following chart illustrates how the Visible, Enable, and Value properties interact.

Define Custom Checks

Define Where Custom Checks Appear

true

Enabled?

true

Do not
display
check
or task

Ignore
Enable
and Value
properties

Display
check
or task

Display
check box
at current
Value, but
grayed out

Display

check

or task
with active

check box

Specify where the Model Advisor places custom checks using the following guidelines:

To place a check in a new folder in the Model Advisor root, use the
ModelAdvisor.Group class.

To place a check in a new folder in the By Task folder, use the
ModelAdvisor.FactoryGroup class.

To place a check in the By Product folder, use the ModelAdvisor.Root.publish

method.

7-49

7 Create Model Advisor Checks

Note If the By Product folder is not displayed in the Model Advisor window, select
Show By Product Folder from the Settings > Preferences dialog box.

Check Definition Function

This example shows a function that defines the custom checks associated with the
callback functions described in “Create Callback Functions and Results” on page 7-56
and the model compile options described in “Define the Compile Option for Custom
Checks” on page 7-72. The Model Advisor compiles and simulates the model; the check
definition function returns a cell array of custom checks to be added to the Model Advisor.

The check definitions in the example use the tasks described in Defining Custom Groups
on page 8-14.

% Defines custom Model Advisor checks
function defineModelAdvisorChecks

% Sample Check 0: Check whose Results are Viewed as Detailed Result Collections
rec = ModelAdvisor.Check('com.mathworks.sample.Check0");

rec.Title = 'Check whether block names appear below blocks (recommended check style)';
rec.TitleTips = 'Example new style callback (recommended check style)';
rec.setCallbackFcn(@SampleNewCheckStyleCallback, 'None', 'DetailStyle');

% set fix operation

myAction0® = ModelAdvisor.Action;

myAction0.setCallbackFcn(@sampleActionCBO);

myAction0.Name='Make block names appear below blocks';
myAction0.Description='Click the button to place block names below blocks"';
rec.setAction(myAction0);

mdladvRoot.register(rec);

% Sample check 1: Informational check

rec = ModelAdvisor.Check('mathworks.example.configManagement');

rec.Title = 'Informational check for model configuration management';
setCallbackFcn(rec, @modelVersionChecksumCallbackUsingFT, 'None', 'StyleOne');
rec.CallbackContext = 'PostCompile’;

mdladvRoot = ModelAdvisor.Root;

mdladvRoot.register(rec);

% Sample check 2: Basic Check with Pass/Fail Status

rec = ModelAdvisor.Check('mathworks.example.unconnectedObjects"');
rec.Title = 'Check for unconnected objects';

setCallbackFcn(rec, @unconnectedObjectsCallbackUsingFT, 'None', 'StyleOne');
mdladvRoot = ModelAdvisor.Root;

mdladvRoot.register(rec);

% Sample Check 3: Check with Subchecks and Actions

rec = ModelAdvisor.Check('mathworks.example.optimizationSettings');
rec.Title = 'Check safety-related optimization settings';
setCallbackFcn(rec, @ptmizationSettingCallback, 'None', 'StyleOne');
% Define an automatic fix action for this check

7-50

Define Custom Checks

modifyAction = ModelAdvisor.Action;

setCallbackFcn(modifyAction, @modifyOptmizationSetting);

modifyAction.Name = 'Modify Settings';

modifyAction.Description = ['Modify model configuration optimization' ...
' settings that can impact safety.'l];

modifyAction.Enable = true;

setAction(rec, modifyAction);

mdladvRoot = ModelAdvisor.Root;

mdladvRoot.register(rec);

Define Check Input Parameters

With input parameters, you can request input before running the check. Define input
parameters using the ModelAdvisor.InputParameter class inside a custom check
function. You must define one instance of this class for each input parameter that you
want to add to a Model Advisor check.

Specify the layout of input parameters with the following methods.

Method Description

ModelAdvisor.Check. - Specifies the size of the input parameter

setInputParametersLayoutGrid grid.

ModelAdvisor.InputParameter. - Specifies the number of rows the parameter

setRowSpan occupies in the Input Parameter layout grid.

ModelAdvisor.InputParameter. - Specifies the number of columns the

setColSpan parameter occupies in the Input Parameter
layout grid.

This example shows how to define input parameters that you add to a custom check. You
must include input parameter definitions inside a custom check definition. The following
code, when included in a custom check definition, creates three input parameters.

rec = ModelAdvisor.Check('com.mathworks.sample.Checkl");
rec.setInputParametersLayoutGrid([3 2]);

% define input parameters

inputParaml = ModelAdvisor.InputParameter;
inputParaml.Name = 'Skip font checks."';
inputParaml.Type = 'Bool’;
inputParaml.Value = false;
inputParaml.Description = 'sample tooltip';
inputParaml.setRowSpan([1l 1]);
inputParaml.setColSpan([1l 1]);

inputParam2 = ModelAdvisor.InputParameter;

7-51

7 Create Model Advisor Checks

7-52

inputParam2.

inputParam?2
inputParam?2

inputParam2.
inputParam2.
inputParam2.

inputParam3

inputParam3.
.Type="'Combobox";
inputParam3.
inputParam3.
inputParam3.
inputParam3.

inputParam3

Name = 'Standard font size';
.Value='12";
.Type='String"';

Description='sample tooltip';
setRowSpan([2 2]);
setColSpan([1l 1]);
= ModelAdvisor.InputParameter;
Name='Valid font';

Description='sample tooltip';
Entries={'Arial', 'Arial Black'};
setRowSpan([2 2]);

setColSpan([2 2]);

rec.setInputParameters({inputParaml, inputParam2,inputParam3});

The Model Advisor displays these input parameters in the Input Parameters box.

Example task with input parameter and auto-fix ability

4 Model Advisor

. [2 By Product Analysis -~

+ (W] I By Task Example style three callbadk

4 || 2 My Group Input Parameters E
V| [] Example task with inp Skip font checks.

I [] Example task 2

7] [2] Example task 3 Standard font size 12 Valid font Arial

» I My Procedure

4 L

Run This Chedk

Result: [| MNotRun Explore

Click Run This Check.

Help Apply

Define Model Advisor Result Explorer Views

A list view provides a way for users to fix check warnings and failures using the Model
Advisor Result Explorer. Creating a list view allows you to:

* Add the Explore Result button to the custom check in the Model Advisor window.

Define Custom Checks

* Provide the information to populate the Model Advisor Result Explorer.

This example shows how to define list views. You must make the Explore Result button
visible using the ModelAdvisor.Check.ListViewVisible property inside a custom
check function, and include list view definitions inside a check callback function. You
must define one instance of this class for each list view that you want to add to a Model
Advisor Result Explorer window.

The following code, when included in a check definition function, adds the Explore
Result button to the check in the Model Advisor.
rec = ModelAdvisor.Check('com.mathworks.sample.Checkl');

% add 'Explore Result' button
rec.ListViewVisible = true;

The following code, when included in a check callback function, provides the information
to populate the Model Advisor Result Explorer.

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);
mdladvObj .setCheckResultStatus(true);

% define list view parameters

myLVParam = ModelAdvisor.ListViewParameter;

myLVParam.Name = 'Invalid font blocks'; % the name appeared at pull down filter
myLVParam.Data = get param(searchResult, 'object')"';

myLVParam.Attributes = {'FontName'}; % name is default property
mdladvObj.setListViewParameters ({myLVParam});

Define Check Actions

An action provides a way for you to specify an action that the Model Advisor performs to
fix a Model Advisor check. When you define an action, the Model Advisor window includes
an Action box below the Analysis box.

You define actions using the ModelAdvisor.Action class inside a custom check
function. You must define:

* One instance of this class for each action that you want to take.

* One action callback function for each action.

This example shows the information you need to populate the Action box in the Model
Advisor. Include this in the check definition function.

rec = ModelAdvisor.Check('mathworks.example.optimizationSettings');

% Define an automatic fix action for this check
modifyAction = ModelAdvisor.Action;

7-53

7 Create Model Advisor Checks

7-54

modifyAction.setCallbackFcn(@modifyOptmizationSetting);

modifyAction.Name = 'Modify Settings';

modifyAction.Description = ['Modify model configuration optimization'
' settings that can impact safety'l];

modifyAction.Enable = true;

rec.setAction(modifyAction);

The Model Advisor, in the right pane, displays an Action box.

—Action

Modify model configuration optimization settings that can impact safety

Maodify Settings |

Result:

See Also

ModelAdvisor.Action | ModelAdvisor.Check | ModelAdvisor.FactoryGroup |
ModelAdvisor.Group | ModelAdvisor.InputParameter | ModelAdvisor.Task |
publish

Related Examples

. “Organize Customization File Checks and Folders” on page 8-12
More About
. “Batch-Fix Warnings or Failures” (Simulink)

. “Create Callback Functions and Results” on page 7-56

See Also

“Define the Compile Option for Custom Checks” on page 7-72
Defining Custom Groups on page 8-14
“Register Checks” on page 7-42

7-35

7 Create Model Advisor Checks

Create Callback Functions and Results

7-56

About Callback Functions

A callback function specifies the actions that the Model Advisor performs on a model or
subsystem, based on the check or action that the user runs. You must create a callback
function for each custom check and action so that the Model Advisor can execute the
function when you run the check. All types of callback functions provide one or more
return arguments for displaying the results after executing the check or action. In some
cases, return arguments are character vectors or cell arrays of character vectors that
support embedded HTML tags for text formatting.

Action

More Information

Create an informational callback function
for a custom check that finds and displays
the model configuration and checksum
information.

“Informational Check Callback Function”
on page 7-57

Create a simple callback function that
indicates if the model passed a check, or to
recommend fixing the issue.

“Simple Check Callback Function” on page
7-58

Create detailed check callback function to
return and organize results as strings in a
layered, hierarchical fashion.

“Detailed Check Callback Function” on
page 7-59

Create a callback function that
automatically displays hyperlinks for every
object returned by the check.

“Check Callback Function with Hyperlinked
Results” on page 7-60

Create a callback function that collects
results into a group, such as blocks in a
subsystem that violate a check. These
results are presented on the Model Advisor
user interface by using report styles that
are viewed by recommended action,

subsystem, or block.

“Check Callback Function for Detailed
Result Collections” on page 7-63

Create Callback Functions and Results

Action More Information

Create an action callback function that “Action Callback Function” on page 7-65
specifies the actions that the Model Advisor
performs on a model or subsystem when
you click the action button.

Create a callback function for a custom “Check With Subchecks and Actions” on
check with two subchecks. page 7-66

Create a callback function for a custom “Basic Check with Pass/Fail Status” on page
basic check with pass/fail status. 7-68

Informational Check Callback Function

This example shows how to create a callback function for a custom informational check
that finds and displays the model configuration and checksum information. The
informational check uses the Result Template API to format the check result.

An informational check includes the following items in the results:

* A description of what the check is reviewing.

» References to standards, if applicable.

An informational check does not include the following items in the results:

* The check status. The Model Advisor displays the overall check status, but the status
is not in the result.

* A description of the status.

* The recommended action to take when the check does not pass.

* Subcheck results.
* A line below the results.

Sample Check 1 Callback Function: Informational Check
Find and display model configuration and checksum information
Informational checks do not have a passed or warning status in the results

d® o o°

function resultDescription = modelVersionChecksumCallbackUsingFT(system)
resultDescription = [];

system = getfullname(system);

model = bdroot(system);

% Format results in a list using Model Advisor Result Template API
ft = ModelAdvisor.FormatTemplate('ListTemplate');

7-357

7 Create Model Advisor Checks

% Add See Also section for references to standards
docLinkSfunction{1} = {['IEC 61508-3, Table A.8 (5)

' ''Software configuration management'' '1};
setRefLink(ft,docLinkSfunction);

% Description of check in results
desc = 'Display model configuration and checksum information.';
% If running the Model Advisor on a subsystem, add note to description
if strcmp(system, model) == false

desc = strcat(desc, ['
NOTE: The Model Advisor is reviewing a' .

' sub-system, but these results are based on root-level settings.']);

end
setCheckText (ft, desc);

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);
% If err, use these values

mdlver = 'Error - could not retrieve Version';
mdlauthor = '"Error - could not retrieve Author';
mdldate = 'Error - could not retrieve Date';
mdlsum = 'Error - could not retrieve CheckSum';

% Get model configuration and checksum information
ry
mdlver = get param(model, 'ModelVersion');
mdlauthor = get param(model, 'LastModifiedBy"');
mdldate = get param(model, 'LastModifiedDate');

~+

mdlsum = Simulink.BlockDiagram.getChecksum(model);
mdlsum = [num2str(mdlsum(1l)) ' ' num2str(mdlsum(2)) ' ' ..
num2str(mdlsum(3)) ' ' num2str(mdlsum(4))];
mdladvObj.setCheckResultStatus(true); % init to true
catch err

mdladvObj.setCheckResultStatus(false);
setSubResultStatusText(ft,err.message);
resultDescription{end+1} = ft;
return

end

% Display the results

1bStr ='
";

resultStr = ['Model Version: ' mdlver 1bStr 'Author: ' mdlauthor 1bStr ...
'Date: ' mdldate 1bStr 'Model Checksum: ' mdlsum];

setSubResultStatusText(ft, resultStr);

% Informational checks do not have subresults, suppress line

setSubBar(ft, false);
resultDescription{end+1} = ft;

Simple Check Callback Function

This example shows how to create a simple check callback function. Use a simple check
callback function with results formatted using the Result Template API to indicate
whether the model passed or failed the check, or to recommend fixing an issue. The

7-58

Create Callback Functions and Results

keyword for this callback function is StyleOne. The check definition requires this
keyword.

The check callback function takes the following arguments.

Argument 1/0 Type Description

system Input Path to the model or subsystem analyzed by the Model
Advisor.

result Output MATLAB character vector that supports Model Advisor
Formatting API on page 7-86 calls or embedded HTML
tags for text formatting.

Detailed Check Callback Function

This example shows how to create a detailed check callback function. Use the detailed
check callback function to return and organize results as strings in a layered, hierarchical
fashion. The function provides two output arguments so you can associate text
descriptions with one or more paragraphs of detailed information. The keyword for the
detailed callback function is StyleTwo. The check definition requires this keyword.

The detailed callback function takes the following arguments.

Argument 1/0 Type Description

system Input Path to the model or system analyzed by
the Model Advisor.

ResultDescription Output Cell array of MATLAB character vectors

that supports Model Advisor Formatting
API on page 7-86 calls or embedded
HTML tags for text formatting. The Model
Advisor concatenates the
ResultDescription character vector
with the corresponding array of
ResultDetails character vectors.

ResultDetails Output Cell array of cell arrays, each of which
contains one or more character vectors.

Note The ResultDetails cell array must be the same length as the
ResultDescription cell array.

7-59

7 Create Model Advisor Checks

This example shows a detailed check callback function that checks optimization settings
for simulation and code generation.

Sample StyleTwo callback function, used for check "Check model optimization settings"
Please refer to Model Advisor API document for more details.

function [ResultDescription, ResultDetails] = SampleStyleTwoCallback(system)
ResultDescription ={};

ResultDetails ={};

d® o° o o°

model = bdroot(system);
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system); % get object
mdladvObj.setCheckResultStatus(true); % init result status to pass

% Check Simulation optimization setting

ResultDescription{end+1} = ModelAdvisor.Paragraph(['Check Simulation '...
'optimization settings:']);

if strcmp(get param(model, 'BlockReduction'), 'off');
ResultDetails{end+1} = {ModelAdvisor.Text(['It is recommended to '...

'turn on Block reduction optimization option.',{'italic'}1)};

mdladvObj.setCheckResultStatus(false); % set to fail
mdladvObj.setActionEnable(true);

else
ResultDetails{end+1} = {ModelAdvisor.Text('Passed',{'pass'})};

end

% Check code generation optimization setting

ResultDescription{end+1} = ModelAdvisor.Paragraph(['Check code generation '...
'optimization settings:']);

ResultDetails{end+1} = {};

if strcmp(get param(model, 'LocalBlockOutputs'),'off');

ResultDetails{end}{end+1} = ModelAdvisor.Text(['It is recommended to'...
' turn on Enable local block outputs option.',{'italic'}]);
ResultDetails{end}{end+1} = ModelAdvisor.LineBreak;

mdladvObj.setCheckResultStatus(false); % set to fail
mdladvObj.setActionEnable(true);

end

if strcmp(get param(model, 'BufferReuse'),'off');
ResultDetails{end}{end+1} = ModelAdvisor.Text(['It is recommended to'...

' turn on Reuse block outputs option.',{'italic'}]);

mdladvObj.setCheckResultStatus(false); % set to fail
mdladvObj.setActionEnable(true);

end

if isempty(ResultDetails{end})
ResultDetails{end}{end+1} = ModelAdvisor.Text('Passed',{'pass'});

end

Check Callback Function with Hyperlinked Results

This example shows how to create a callback function with hyperlinked results. This
callback function automatically displays hyperlinks for every object returned by the check

7-60

Create Callback Functions and Results

so that you can easily locate problem areas in your model or subsystem. The keyword for
this type of callback function is StyleThree. The check definition requires this keyword.

This callback function takes the following arguments.

Argument 1/0 Type Description

system Input Path to the model or system analyzed by
the Model Advisor.

ResultDescription Output Cell array of MATLAB character vectors

that supports the Model Advisor
Formatting API calls or embedded HTML
tags for text formatting.

ResultDetails Output Cell array of cell arrays, each of which
contains one or more Simulink objects
such as blocks, ports, lines, and Stateflow
charts. The objects must be in the form of
a handle or Simulink path.

Note The ResultDetails cell array must be the same length as the
ResultDescription cell array.

The Model Advisor automatically concatenates each character vector from
ResultDescription with the corresponding array of objects from ResultDetails.
The Model Advisor displays the contents of ResultDetails as a set of hyperlinks, one
for each object returned in the cell arrays. When you click a hyperlink, the Model Advisor
displays the target object highlighted in your Simulink model.

This example shows a check callback function with hyperlinked results. This example
checks a model for consistent use of font type and font size in its blocks. It also contains
input parameters, actions, and a call to the Model Advisor Result Explorer, which are
described in later sections.

ample StyleThree callback function, used for check "Check Simulink block font".
lease refer to Model Advisor API document for more details.

o°
o wn

function [ResultDescription, ResultDetails] = SampleStyleThreeCallback(system)
ResultDescription ={};
ResultDetails ={};

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);

7-61

7 Create Model Advisor Checks

mdladvObj.setCheckResultStatus(true);
needEnableAction = false;

% get input parameters

inputParams = mdladvObj.getInputParameters;
skipFontCheck = inputParams{1}.Value;
regularFontSize = inputParams{2}.Value;
regularFontName = inputParams{3}.Value;

if skipFontCheck

ResultDescription{end+1} = ModelAdvisor.Paragraph('Skipped."');

ResultDetails{end+1} {};
return

end

regularFontSize = str2double(regularFontSize);

if regularFontSize<l || regularFontSize>=99
mdladvObj.setCheckResultStatus(false);
ResultDescription{end+1} = ModelAdvisor.Paragraph(['Invalid font size. '...
'Please enter a value between 1 and 99']);
ResultDetails{end+1} = {};

end

% find all blocks inside current system
allBlks = find system(system);

% block diagram doesn't have font property
% get blocks inside current system that have font property
allBlks = setdiff(allBlks, {system});

% find regular font name blocks
regularBlks = find system(allBlks, 'FontName', regularFontName);

% Llook for different font blocks in the system
searchResult = setdiff(allBlks, regularBlks);
if ~isempty(searchResult)

ResultDescription{end+1} = ModelAdvisor.Paragraph(['It is recommended to '...

'use same font for blocks to ensure uniform appearance of model. '...
'The following blocks use a font other than ' regularFontName ': ']);
ResultDetails{end+1} = searchResult;
mdladvObj.setCheckResultStatus(false);
myLVParam = ModelAdvisor.ListViewParameter;
myLVParam.Name = 'Invalid font blocks'; % pull down filter name
myLVParam.Data = get param(searchResult, 'object')"';
myLVParam.Attributes = {'FontName'}; % name is default property
mdladvObj.setlListViewParameters ({myLVParam});
needEnableAction = true;
else

ResultDescription{end+1} = ModelAdvisor.Paragraph(['All block font names '...

‘are identical.']l);
ResultDetails{end+1}

{}

end

% find regular font size blocks

regularBlks = find system(allBlks, 'FontSize', regularFontSize);
% look for different font size blocks in the system
searchResult = setdiff(allBlks, regularBlks);

if ~isempty(searchResult)

7-62

Create Callback Functions and Results

ResultDescription{end+1} = ModelAdvisor.Paragraph(['It is recommended to '
'use same font size for blocks to ensure uniform appearance of model. '
'The following blocks use a font size other than ' num2str(regularFontSize) ': '1);
ResultDetails{end+1} = searchResult;
mdladvObj.setCheckResultStatus(false);
myLVParam = ModelAdvisor.ListViewParameter;
myLVParam.Name = 'Invalid font size blocks'; % pull down filter name
myLVParam.Data = get param(searchResult, 'object')"’;
myLVParam.Attributes = {'FontSize'}; % name is default property
mdladvObj.setListViewParameters. ..
({mdladvObj.getListViewParameters{:}, myLVParam});
needEnableAction = true;
else
ResultDescription{end+1} = ModelAdvisor.Paragraph(['All block font sizes '
'are identical.']l);
ResultDetails{end+1}
end

{

mdladvObj.setActionEnable(needEnableAction);
mdladvObj.setCheckErrorSeverity(1);

In the Model Advisor, if you run Example task with input parameter and auto-fix
ability for the slvnvdemo mdladv model, you can view the hyperlinked results. Clicking
the first hyperlink, slvnvdemo _mdladv/Input, displays the Simulink model with the
Input block highlighted.

Check Callback Function for Detailed Result Collections

This example shows a check callback function that creates result detail objects that are
collected into a group, such as blocks in a subsystem that violate a check. When a check
is not violated, the result details contain the check description and result status. When a
check is violated, the result details contain the check description, result status, and the
recommended action to fix the issue.

The keyword for this callback function is DetailStyle. The check definition requires
this keyword. See “Check Definition Function” on page 7-50.

The callback function takes the arguments listed in the table.

Argument 1/0 Type Description

system Input Path to the model or system analyzed by
the Model Advisor.

CheckObj Input ModelAdvisor.Check object for the
check.

7-63

7 Create Model Advisor Checks

In this example, the callback function reviews the model and identifies blocks whose
name is not located below the block. It uses name and value pairs to gather the results
into collections.

Sample new check style callback function, used for check "Check whether block names appear below blocks".
Please refer to Model Advisor API document for more details.

function SampleNewCheckStyleCallback(system, CheckObj)

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system); % get object

o® o° o o°

% find all blocks whose name does not appear below blocks
violationBlks = find system(system, 'Type','block',...
'NamePlacement', 'alternate’, ...
'ShowName', 'on');
if isempty(violationBlks)
ElementResults = ModelAdvisor.ResultDetail;
ElementResults.IsInformer = true;
ElementResults.Description = 'Identify blocks where the name is not displayed below the block.";
ElementResults.Status = 'All blocks have names displayed below the block.';
mdladvObj.setCheckResultStatus(true);
else
ElementResults(1,numel(violationBlks))=ModelAdvisor.ResultDetail;
for i=1:numel(ElementResults)
ElementResults(i).setData(violationBlks{i});

ElementResults(i).Description = 'Identify blocks where the name is not displayed below the block.';
ElementResults(i).Status = 'The following blocks have names that do not display below the blocks:';
ElementResults(i).RecAction = 'Change the location such that the block name is below the block.';

end
mdladvObj.setCheckResultStatus(false);
mdladvObj.setActionEnable(true);

end

CheckObj.setResultDetails (ElementResults);

In the Model Advisor, if you run Check whether block names appear below blocks
(recommended check style) for the slvnvdemo _mdladv model, you can view the
results by selecting:

* View By > Recommended Action — When a check is violated, this view shows a list
of model elements that violate the check. When there is no violation, this view
provides a brief description stating that the check was not violated.

* View By > Subsystem — This view shows a table of model elements that violate the
check, organized by model or subsystem (when applicable)

* View By > Block — This view provides a list of check violations for each block

When there are check violations, click the hyperlink to easily review the issues in your
model or subsystem. To create a check using this callback function, see “Create
Customized Pass/Fail Check with Detailed Result Collections” on page 7-14.

7-64

Create Callback Functions and Results

Action Callback Function

This example shows how to create an action callback function. An action callback function
specifies the actions that the Model Advisor performs on a model or subsystem when the
user clicks the action button. You must create one callback function for the action that
you want to take.

The action callback function takes the following arguments.

Argument 1/0 Type Description

taskobj Input The ModelAdvisor.Task object for the check that
includes an action definition.

result Output MATLAB character vector that supports Model Advisor
Formatting API on page 7-86 calls or embedded HTML
tags for text formatting.

This example shows an action callback function that fixes the optimization settings that
the Model Advisor reviews as defined in “Check With Subchecks and Actions” on page 7-
66.

% Sample Check 3 Action Callback Function: Check with Subresults and Actions
% Fix optimization settings

function result = modifyOptmizationSetting(taskobj)

% Initialize variables

result = ModelAdvisor.Paragraph();

mdladvObj = taskobj.MAObj;

system = bdroot(mdladvObj.System);

% 'Block reduction' is selected
% Clear the check box and display text describing the change
if ~strcmp(get param(system, 'BlockReduction'), 'off")
set param(system, 'BlockReduction', 'off');
result.addItem(ModelAdvisor.Text(...
'Cleared the ''Block reduction'' check box.',{'Pass'}));
result.addItem(ModelAdvisor.LineBreak);
end
% 'Conditional input branch execution' is selected
% Clear the check box and display text describing the change
if ~strcmp(get param(system, 'ConditionallyExecuteInputs'),'off")
set param(system, 'ConditionallyExecuteInputs', 'off');
result.addItem(ModelAdvisor.Text(
'Cleared the ''Conditional input branch execution'' check box."',
{'Pass'}));
end

7-65

7 Create Model Advisor Checks

Action Callback Function for Detailed Result Collections

This example shows the action callback function for check results that are collected into a
group, such as blocks in a subsystem that violate a check. From the Model Advisor, you
can use this functionality to fix issues flagged by the check.

ample Check 0 Action Callback Function: Check whose Results are Viewed as Detailed Result Collections
lease refer to Model Advisor API document for more details.

o°
T n

function result = sampleActionCBO(taskobj)

mdladvObj = taskobj.MAObj;

checkObj = taskobj.Check;

resultDetailObjs = checkObj.ResultDetails;

for i=1l:numel(resultDetailObjs)
% take some action for each of them
block=Simulink.ID.getHandle(resultDetailObjs(i).Data);
set_param(block, 'NamePlacement', ‘normal');

end

result = ModelAdvisor.Text('Changed the location such that the block name is below the block.');
mdladvObj.setActionEnable(false);

In the Model Advisor, open the slvnvdemo mdladv model. Right-click on a block and
select Rotate & Flip > Flip Block Name. When you run Check whether block names
appear below blocks (recommended check style), the check fails.

You can fix the failed blocks by using one of these methods:

* Update each violation individually by double-clicking the hyperlink to open the block.
Right-click the block and select Rotate & Flip > Flip Block Name.

* Select the Make block names appear below blocks button. The Model Advisor
automatically fixes the issues in the model. Notice that the button is now greyed out.

To create a check using this action callback function, see “Create Customized Pass/Fail
Check with Detailed Result Collections” on page 7-14.

Check With Subchecks and Actions

This example shows how to create a callback function for a custom check that finds and
reports optimization settings. The check consists of two subchecks. The first reviews the
Block reduction optimization setting and the second reviews the Conditional input
branch execution optimization setting.

A check with subchecks includes the following items in the results:

7-66

Create Callback Functions and Results

* A description of what the overall check is reviewing.

+ A title for the subcheck.

* A description of what the subcheck is reviewing.

» References to standards, if applicable.

* The status of the subcheck.

* A description of the status.

* Results for the subcheck.

* Recommended actions to take when the subcheck does not pass.
* Aline between the subcheck results.

Sample Check 3 Callback Function: Check with Subchecks and Actions

Find and report optimization settings

function ResultDescription = OptmizationSettingCallback(system)

% Initialize variables

system =getfullname(system);

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);
mdladvObj.setCheckResultStatus(false); % Default check status is 'Warning'
ResultDescription = {};

system = bdroot(system);

d® o°

% Format results in a list using Model Advisor Result Template API
% Create a list template object for first subcheck
tl

f = ModelAdvisor.FormatTemplate('ListTemplate');

% Description of check in results
setCheckText (ftl,['Check model configuration for optimization settings that'...
'can impact safety.'l);

% Title and description of first subcheck
setSubTitle(ftl, 'Verify Block reduction setting');
setInformation(ftl, 'Check whether the ''Block reduction'' check box is cleared.');
% Add See Also section with references to applicable standards
docLinks{1} = {['Reference D0-178B Section 6.3.4e - Source code '
'is traceable to low-level requirements']};
% Review 'Block reduction' optimization
setRefLink(ftl,docLinks);
if strcmp(get param(system, 'BlockReduction'),'off"')
% 'Block reduction' is cleared
% Set subresult status to 'Pass' and display text describing the status
setSubResultStatus(ftl, 'Pass');
setSubResultStatusText(ftl, 'The ''Block reduction'' check box is cleared.');
ResultStatus = true;
else
% 'Block reduction' is selected
% Set subresult status to 'Warning' and display text describing the status
setSubResultStatus(ftl, 'Warn');
setSubResultStatusText(ftl, 'The ''Block reduction'' check box is selected.');
setRecAction(ftl,['Clear the ''Optimization > Block reduction'''
' check box in the Configuration Parameters dialog box.'l);

7-67

7 Create Model Advisor Checks

ResultStatus = false;
end

ResultDescription{end+1} = ft1;

% Title and description of second subcheck

ft2 = ModelAdvisor.FormatTemplate('ListTemplate');

setSubTitle(ft2, 'Verify Conditional input branch execution setting');

setInformation(ft2,['Check whether the ''Conditional input branch execution'''...
' check box is cleared.'])

% Add See Also section and references to applicable standards

docLinks{1} = {['Reference D0-178B Section 6.4.4.2 - Test coverage '
'of software structure is achieved']};

setRefLink(ft2,docLinks);

% Last subcheck, suppress line
setSubBar(ft2,false);

% Check status of the 'Conditional input branch execution' check box
if strcmp(get param(system, 'ConditionallyExecuteInputs'),'off")
% The 'Conditional input branch execution' check box is cleared
% Set subresult status to 'Pass' and display text describing the status
setSubResultStatus(ft2, 'Pass');
setSubResultStatusText(ft2,['The ''Conditional input branch execution'"''
'check box is cleared.']);
else
% 'Conditional input branch execution' is selected
% Set subresult status to 'Warning' and display text describing the status
setSubResultStatus(ft2, 'Warn');
setSubResultStatusText(ft2,['The ''Conditional input branch execution'''...
' check box is selected.']l);
setRecAction(ft2,['Clear the ''Optimization > Conditional input branch '
'execution'' check box in the Configuration Parameters dialog box.']);
ResultStatus = false;
end

ResultDescription{end+1} = ft2; % Pass list template object to Model Advisor
mdladvObj.setCheckResultStatus(ResultStatus); % Set overall check status

% Enable Modify Settings button when check fails
mdladvObj.setActionEnable(~ResultStatus);

Basic Check with Pass/Fail Status

This example shows a callback function for a custom basic check that finds and reports
unconnected lines, input ports, and output ports.

A basic check includes the following items in the results:

* A description of what the check is reviewing.
» References to standards, if applicable.

7-68

Create Callback Functions and Results

* The status of the check.

* A description of the status.

* Results for the check.

* The recommended actions to take when the check does not pass.

A basic check does not include the following items in the results:

e Subcheck results.
* Aline below the results.

Sample Check 2 Callback Function: Basic Check with Pass/Fail Status
Find and report unconnected lines, input ports, and output ports
function ResultDescription = unconnectedObjectsCallbackUsingFT(system)
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);

% Initialize variables

mdladvObj.setCheckResultStatus(false);

ResultDescription ={};

ResultStatus = false; % Default check status is 'Warning'

system = getfullname(system);

isSubsystem = ~strcmp(bdroot(system), system);

d° o°

% Format results in a list using Model Advisor Result Template API
% Create a list template object

ft = ModelAdvisor.FormatTemplate('ListTemplate');

% Description of check in results
if isSubsystem
checkDescStr = ['Identify unconnected lines, input ports, and '

'output ports in the subsystem.'];

else
checkDescStr = ['Identify unconnected lines, input ports, and '
'output ports in the model.'];

end
setCheckText (ft,checkDescStr);

% Add See Also section with references to applicable standards
checkStdRef = 'IEC 61508-3, Table A.3 (3) ''Language subset'' ';
docLinkSfunction{1} = {checkStdRef};
setRefLink(ft,docLinkSfunction);

% Basic checks do not have subresults, suppress line
setSubBar(ft, false);

% Check for unconnected lines, inputs, and outputs
sysHandle = get param(system, 'Handle');
uLines = find system(sysHandle,

'Findall', 'on',

'LookUnderMasks', 'on',
'Type', 'line',
'Connected', 'off');

uPorts = find system(sysHandle,

7-69

7 Create Model Advisor Checks

'Findall', 'on',

'LookUnderMasks', 'on',
'Type', 'port',
'Line', -1);

% Use parents of port objects for the correct highlight behavior
if ~isempty(uPorts)
for i=1:1length(uPorts)
uPorts(i) = get param(get param(uPorts(i), 'Parent'), 'Handle');
end
end

% Create cell array of unconnected object handles
modelObj = {};
searchResult = union(uLines, uPorts);
for i = 1:length(searchResult)
modelObj{i} = searchResult(i);
end

o unconnected objects in model
et result status to 'Pass' and display text describing the status
if isempty(modelObj)
setSubResultStatus(ft, 'Pass');
if isSubsystem
setSubResultStatusText(ft,['There are no unconnected lines, '
"input ports, and output ports in this subsystem.']);

wn =

%
%

else
setSubResultStatusText(ft,['There are no unconnected lines, '
"input ports, and output ports in this model.']);
end
ResultStatus = true;
Unconnected objects in model
Set result status to 'Warning' and display text describing the status
else
setSubResultStatus(ft, 'Warn');
if ~isSubsystem
setSubResultStatusText(ft,['The following lines, input ports, '

%
%

'or output ports are not properly connected in the system: ' system]);
else
setSubResultStatusText(ft,['The following lines, input ports, or ' ...
'output ports are not properly connected in the subsystem: ' system]);
end

% Specify recommended action to fix the warning
setRecAction(ft, 'Connect the specified blocks.');
% Create a list of handles to problem objects
setlListObj (ft,model0bj);
ResultStatus = false;
end
% Pass the list template object to the Model Advisor
ResultDescription{end+1} = ft;
% Set overall check status
mdladvObj.setCheckResultStatus (ResultStatus);

7-70

See Also

See Also
ModelAdvisor.Check | ModelAdvisor.FormatTemplate | ModelAdvisor.Task

More About

. Defining Custom Groups on page 8-14
. “Define Custom Checks” on page 7-47
. “Format Check Results” on page 7-86
. “Register Checks” on page 7-42

7-71

7 Create Model Advisor Checks

Define the Compile Option for Custom Checks

7-72

Depending on the implementation of your model and what you want your custom check to
achieve, it is important that you specify the appropriate compile option so the intended
information is evaluated by your custom check.

You use the ModelAdvisor.Check.CallbackContext property to define the compile option:
* None specifies that the Model Advisor does not have to compile your model before

analysis by your custom check.

* PostCompile specifies that the Model Advisor must compile the model to update the
model diagram and then simulate the model to execute your custom check.

* PostCompileForCodegen specifies that the Model Advisor must compile and update
the model diagram specifically for code generation, but does not simulate the model.
Use this option for Model Advisor checks that analyze code generation readiness of
the model.

Checks for Models That Are Not Compiled by the Model
Advisor

For custom checks that do not require the Model Advisor to compile the model before
execution of the check, in the check definition you specify the
ModelAdvisor.Check.CallbackContext property as:

rec.CallbackContext = 'None';

In this situation, the Model Advisor simulates the model. The Model Advisor does not
compile the model.

Note By default, the Model Advisor does not compile the model for custom checks. You
do not have to include the ModelAdvisor.Check.CallbackContext property in the check
definition.

This example shows a check definition that does not require the model to be compiled.

function defineModelAdvisorChecks
mdladvRoot = ModelAdvisor.Root;

% == mmmcmcmcmemeeecmc e e~

% Sample Check: Check whose model does not need to be compiled

Define the Compile Option for Custom Checks

rec = ModelAdvisor.Check('exampleCheck2");

rec.Title = 'Non-compile check example';

rec.TitleID = 'custom.dtcCheck.NonCompilel';

rec.TitleTips = 'A custom check for a model that does not need to be compiled °';
rec.setCallbackFcn(@CheckNoCompile, 'None', 'StyleOne');

rec.CallbackContext = 'None'; % Not compiled

mdladvRoot.publish(rec, 'Demo');

Checks That Require the Model to be Compiled and Simulated
by the Model Advisor

For custom checks that require model compilation and simulation to properly check the
implementation of the model, in the check definition you specify the
ModelAdvisor.Check.CallbackContext property as:

rec.CallbackContext = 'PostCompile’;

In this situation, the Model Advisor updates the model diagram and simulates the model.
The Model Advisor does not flag modeling issues that fail during code generation because
these issues do not affect the simulated model.

This example shows a check definition that requires a model to be compiled and
simulated.

function defineModelAdvisorChecks
mdladvRoot = ModelAdvisor.Root;

rec = ModelAdvisor.Check('exampleCheck3');

rec.Title = 'PostCompile check example';

rec.TitleID = 'custom.dtcCheck.Compilel’;

rec.TitleTips = 'A custom check for a model that is compiled and simulated';
rec.setCallbackFcn(@CheckCompileSimulate, 'None', 'StyleOne');
rec.CallbackContext = 'PostCompile'; % Compiled and simulated

mdladvRoot.publish(rec, 'Demo');

7-73

7 Create Model Advisor Checks

7-74

Checks That Evaluate Code Generation Readiness of the
Model

For custom checks that evaluate code generation readiness, you must develop the model
to generate code. In the check definition you specify the
ModelAdvisor.Check.CallbackContext property as:

rec.CallbackContext = 'PostCompileForCodegen';

In this situation, the Model Advisor compiles the model and updates the model diagram
specifically for code generation. The Model Advisor does not assume that the model is
being simulated.

You can create custom Model Advisor checks that identify code generation setup issues in
a model at an earlier stage, avoiding unexpected errors during code generation. For
example, in this model, the Red enumeration in BasicColors and OtherColors are OK
for use in a simulated model. In the generated code, however, these Red enumerations
result in an enumeration clash. By using the 'PostCompileForCodegen' option, your
custom Model Advisor check can identify this type of code generation setup issue.

Define the Compile Option for Custom Checks

classdef BasicColors <= Simulink.IntEnumType

enumerati
Red (0)
ue

Green (2)

end
methods (Static = true)
function retVal =|addClassNameToEnumNames
retval = false:
end
end
end

BasicColors i double
i 1o
double

classdef OtherColors = Simulink.IntEnumType

enumer OtherColors double
Red (0) IRE—h Oullm@
ellow (1)

Magenta (2)

end
methods (Static = true)
function retval =laddClassNameToEnumNames ()
retVal = false;
end
end
end

The 'PostCompileForCodegen' option compiles the model for all variant choices. This
compilation enables you to analyze possible issues present in the generated code for
active and inactive variant paths in the model. An example is provided in “Create Custom
Check to Evaluate Active and Inactive Variant Paths from a Model” on page 7-76.

This example shows a check definition that requires a model to be compiled for code
generation
function defineModelAdvisorChecks

mdladvRoot = ModelAdvisor.Root;

ample Check: Check whose model is compiled for generated code.
odel is not simulated.

° o° o°
=W0n

7-75

7 Create Model Advisor Checks

rec = ModelAdvisor.Check('exampleCheckl");

rec.Title = 'PostCompileForCodegen check example';

rec.TitleID = 'custom.dtcCheck.CompileForCodegenl';

rec.TitleTips = 'A custom check for evaluating the generated code';
rec.setCallbackFcn(@CheckSingleToBoolConversion, ‘None', 'StyleOne');
rec.CallbackContext = 'PostCompileForCodegen'; % Compile for generated code

mdladvRoot.publish(rec, 'Demo');

Create Custom Check to Evaluate Active and Inactive Variant
Paths from a Model

This example shows the creation of a custom Model Advisor check that evaluates active
and inactive variant paths from a variant system model. The example provides Model
Advisor results that demonstrate why you use PostCompileForCodegen versus
PostCompile as the value for the ModelAdvisor.Check.CallbackContext property
when generating code from the model is your final objective. See “Define the Compile
Option for Custom Checks” on page 7-72.

Update Model to Analyze All Variant Choices

For the Model Advisor to evaluate active and inactive paths in a variant system, you must
enable the Analyze all choices during update diagram and generate preprocessor
conditionals option for the variant blocks (Variant Sink, Variant Source, and Variant
Subsystem, Variant Model).

Note: Selecting this option can affect the execution time, thereby increasing the time it
takes for the Model Advisor to evaluate the model.

Open the example model ex check compile code gen.

2 For each Variant Source block, open the block parameters and select the Analyze all
choices during update diagram and generate preprocessor conditionals
option.

3 Save the model to your local working folder.

7-76

Define the Compile Option for Custom Checks

single
convert e
Data Type Conversion
boolean
single
convert e
Data Type Conversioni %
single
(3 p——» convert >0
Data Type Conversion2
boolean
single
convert >0
Data Type Conversion3 %

Update s1_customization.m File

In your working folder, update the s1_customization.m file. Save your changes. If you
are asked if it is ok to overwrite the file, click OK.

function sl customization(cm)

% --- register custom checks
cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

end

% --- defineModelAdvisorChecks function
function defineModelAdvisorChecks
mdladvRoot = ModelAdvisor.Root;

rec = ModelAdvisor.Check('exampleCheckl');

rec.Title = 'Check to identify SINGLE to BOOL conversions';
rec.TitleID = 'custom.dtcCheck.CompileForCodegenl"';

7-77

7 Create Model Advisor Checks

rec.TitleTips = 'Custom check to identify SINGLE to BOOL conversions';
rec.setCallbackFcn(@CheckSingleToBoolConversion, 'None', 'StyleOne');
rec.CallbackContext = 'PostCompileForCodegen'; % Compile for Code Generation

mdladvRoot.publish(rec, 'Demo');
end

% --- creates SimpleCallback function
function result = CheckSingleToBoolConversion(system)

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);
result={};
dtcBlks = find system(system, 'BlockType', 'DataTypeConversion');
for ii = numel(dtcBlks):-1:1
dtcBlk = dtcBlks{ii};
compDataTypes = get param(dtcBlk, 'CompiledPortDataTypes');
if isempty(compDataTypes)
dtcBlks(ii) = [1;
continue;
end
if ~(strcmp(compDataTypes.Inport, 'single') && strcmp(compDataTypes.OQutport, 'boole
dtcBlks(ii) = [1;
continue;
end
end

ft = ModelAdvisor.FormatTemplate('ListTemplate');
ft.setInformation(['This check looks for data type conversion blocks that'...
' convert single data to boolean data']);
if ~isempty(dtcBlks)
ft.setSubResultStatusText(['Check has failed. The following '...
'data type conversion blocks convert single data to boolean:']);
ft.setListObj (dtcBlks);
ft.setSubResultStatus('warn');
ft.setRecAction('Modify the model to avoid converting data type from single to boo’
mdladvObj.setCheckResultStatus(false);
else
ft.setSubResultStatusText(['Check has passed. No data type conversion blocks '...
'that convert single data to boolean were found.']);
ft.setSubResultStatus('pass');
mdladvObj.setCheckResultStatus(true);
end
ft.setSubBar(0);

7-78

Define the Compile Option for Custom Checks

result{end+1} = ft;
end

function result = dummy(~)
result={};
end

Open Model Advisor and Execute Custom Check

Prior to opening the Model Advisor and running the custom check, you must refresh the
Model Advisor check information cache. In the MATLAB Command Window, enter:

Advisor.Manager.refresh customizations
To open the Model Advisor and execute the custom check:

Open your saved model.

In the Modeling tab, select Model Advisor. A System Selector — Model Advisor
dialog box opens. Click OK. The Model Advisor opens.

3 In the left pane, select By Product > Demo > Check to identify SINGLE to BOOL
conversion. If the By Product folder is not displayed in the Model Advisor window,
select Settings > Preferences > Show By Product Folder.

4 Right-click the check and select Run This Check. The Model Advisor compiles the
model and executes the check. The Model Advisor updates the model diagram, with
the inactive variant paths appearing as dimmed.

7-79

7 Create Model Advisor Checks

boobean

Y

single
convert

Data Type Conversion

boobean

single
convert

Data Type Conversion2

Review the Model Advisor Results

Review the check analysis results in the Model Advisor. Click the hyperlink path to open
the violating block in the model editor.

In this example, because you defined the compile option in the sl _customization.m
file as

rec.CallbackContext = 'PostCompileForCodegen';

the Model Advisor generates warnings for the Data Type Conversion blocks in the active
paths and the inactive paths of the Variant system.

7-80

Define the Compile Option for Custom Checks

Check to identify SINGLE to BOOL conversions
Analysis (- Triggers Update Diagram)
Custom check to identify SINGLE to BOOL conversions

Run This Check

Result: /T, Warning

This check looks for data type conversion blocks that convert single data to boolean data

Check has failed. The following data type conversion blocks convert single data to boolean:

ex_check compile code pen/Data Tvpe Conversion
ex_check compile code pen/Data Tvpe Conversion|
ex_check compile code pen/Data Tvpe Conversion2
ex_check compile code g

L I

en/Data Type Conversion3

Recommended Action
Madify the model to avoid converting data type from single to boolean

If you defined the compile option in the sl customization.m file as

rec.CallbackContext = 'PostCompile';

the results include only the Data Type Conversion blocks in the active path.

7-81

7 Create Model Advisor Checks

7-82

Check to identify SINGLE to BOOL conversions
Analysis (" Triggers Update Diagram)
Custom check to identify SINGLE to BOOL conversions

Run This Chedk

Result: ,& Warning

This check looks for data type conversion blocks that convert single data to boolean data

Check has failed. The following data type conversion blocks convert single data to boolean:

gx_check compile code gen/Data Tvpe Conversion
¢ ox_check compile code gen/Data Tvpe Conversion?

Recommended Action
Modify the model to avoid converting data type from single to boolean

See Also
ModelAdvisor.Check | ModelAdvisor.Check.CallbackContext

More About

. “Define Custom Checks” on page 7-47
. “Variant Systems” (Simulink)

Exclude Blocks From Custom Checks

Exclude Blocks From Custom Checks

This example shows how to exclude blocks from custom checks. To save time during
model development and verification, you can exclude individual blocks from custom
checks in a Model Advisor analysis. To exclude custom checks from Simulink blocks and
Stateflow charts, use the ModelAdvisor.Check.supportExclusion and
Simulink.ModelAdvisor.filterResultWithExclusion functions in the

sl customization.m file.

Update the s1_customization.m File

To open the example model, at the command prompt, type slvnvdemo mdladv.
In the model window, double-click View demo sl_customization.m.

To exclude the custom check Check Simulink block font from blocks during Model
Advisor analysis, make three modifications to the s1 customization.m file.

a Enable the Check Simulink block font check to support check exclusions by
using the ModelAdvisor.Check.supportExclusion property. You can now
exclude the check from model blocks. After
rec.setInputParametersLayoutGrid([3 2]);, add
rec.supportExclusion = true;. The check 1 section of the function
defineModelAdvisorChecks now looks like:

% --- sample check 1

rec = ModelAdvisor.Check('com.mathworks.sample.Checkl");

rec.Title = 'Check Simulink block font';

rec.TitleTips = 'Example style three callback’;
rec.setCallbackFcn(@SampleStyleThreeCallback, 'None', 'StyleThree');
rec.setInputParametersLayoutGrid([3 2]);

rec.supportExclusion = true;

b Usethe Simulink.ModelAdvisor.filterResultWithExclusion function to
filter model objects causing a check warning or failure with checks that have
exclusions enabled. To do this, there are two locations in the
sl customization.m file to modify, both in the [ResultDescription,
ResultDetails] = SampleStyleThreeCallback(system) function:

e After both instances of

searchResult = setdiff(allBlks, regularBlks);

add

7-83

7 Create Model Advisor Checks

7-84

searchResult = mdladvObj.filterResultWithExclusion(searchResult);
* In the first location, the function now looks like:

% find regular font name blocks
regularBlks = find system(allBlks, 'FontName', regularFontName);

% look for different font blocks in the system

searchResult = setdiff(allBlks, regularBlks);

searchResult = mdladvObj.filterResultWithExclusion(searchResult);
if ~isempty(searchResult)

* In the second location, the function now looks like:

% find regular font size blocks

regularBlks = find system(allBlks, 'FontSize', regularFontSize);

% look for different font size blocks in the system

searchResult = setdiff(allBlks, regularBlks);

searchResult = mdladvObj.filterResultWithExclusion(searchResult);
if ~isempty(searchResult)

4 Savethe sl customization.m file. If you are asked if it is OK to overwrite the file,
click OK.

Create and Save Exclusions

1 In the Modeling tab, select Model Advisor to open the Model Advisor.

Note If the By Product folder is not displayed in the Model Advisor window, select
Show By Product Folder from the Settings > Preferences dialog box.

2 In the left pane of the Model Advisor window, select the By Product > Demo >
Check Simulink block font check. In the right pane, select Run This Check. The
check fails.

In the Model Advisor window, click the Enable highlighting button (E}). The
blocks causing the Check Simulink block font check failure are highlighted in
yellow.

4 In the model window, right-click the X block and select Model Advisor > Exclude
block only > Check Simulink block font.

In the Model Advisor Exclusion Editor, click OK to create the exclusion file.

In the model window, right-click the Input block and select Model Advisor >
Exclude block only > Check Simulink block font.

See Also

Review Exclusions

In the Model Advisor Exclusion Editor, click OK to update the exclusion file.

2 In the left pane of the Model Advisor window, select the By Product > Demo >
Check Simulink block font check. In the right pane, select Run This Check. The
check now passes. In the right-pane of the Model Advisor window, you can see the
Check Exclusion Rules that the Model Advisor during the analysis.

3 Close slvnvdemo mdladv.

See Also

Simulink.ModelAdvisor | supportExclusion

Related Examples
. Example of Excluding Gain and Outport Blocks From Checks on page 3-21
. Excluding Blocks From Model Advisor Checks on page 3-14

More About

. “Run Model Advisor Checks and Review Results” on page 3-5
. “Address Model Check Results with Highlighting” (Simulink)

7-85

7 Create Model Advisor Checks

Format Check Results

7-86

Format Results

You can make the analysis results of your custom checks appear similar to each other
with minimal scripting using the ModelAdvisor.FormatTemplate class.

If this format template does not meet your needs, or if you want to format action results,
use the Model Advisor Formatting API to produce formatted outputs in the Model Advisor.
The following constructors of the ModelAdvisor class allow you to format the output.

Constructor Description

ModelAdvisor.Text Create Model Advisor text output.
ModelAdvisor.List Create list.

ModelAdvisor.Table Create table.
ModelAdvisor.Paragraph Create and format paragraph.
ModelAdvisor.LineBreak Insert line break.
ModelAdvisor.Image Include image in Model Advisor output.

Format Text

Text is the simplest form of output. You can format text in many different ways. The
default text formatting is:

* Empty
* Default color (black)
* Unformatted (not bold, italicized, underlined, linked, subscripted, or superscripted)

To change text formatting, use the ModelAdvisor.Text constructor. When you want one
type of formatting for all text, use this syntax:

ModelAdvisor.Text(content, {attributes})

When you want multiple types of formatting, you must build the text.

t1l = ModelAdvisor.Text('It is ');
t2 = ModelAdvisor.Text('recommended', {'italic'});
t3 = ModelAdvisor.Text(' to use same font for ');

Format Check Results

t4
t5

ModelAdvisor.Text('blocks', {'bold'});
ModelAdvisor.Text(' for a uniform appearance in the model.');

result = [t1l, t2, t3, t4, t5];

Add ASCII and Extended ASCII characters using the MATLAB char command. For more
information, see the ModelAdvisor.Text class page.

Format Lists

You can create two types of lists: numbered and bulleted. The default list formatting is
bulleted. Use the ModelAdvisor.List constructor to create and format lists. You can
create lists with indented subsections, formatted as either numbered or bulleted.

subList = ModelAdvisor.List();

subList.setType('numbered"')

subList.addItem(ModelAdvisor.Text('Sub entry 1', {'pass','bold'}));
subList.addItem(ModelAdvisor.Text('Sub entry 2', {'pass','bold'}));

topList = ModelAdvisor.List();

topList.addItem([ModelAdvisor.Text('Entry level 1',{'keyword', 'bold'}), subList]);
topList.addItem([ModelAdvisor.Text('Entry level 2',{'keyword','bold'}), subList]);

Format Tables

The default table formatting is:

* Default color (black)
» Left justified
* Bold title, row, and column headings

Change table formatting using the ModelAdvisor.Table constructor.

This example creates a subtable within a table.

tablel = ModelAdvisor.Table(1,1);
table2 = ModelAdvisor.Table(2,3);
table2.setHeading('Table 2');
table2.setHeadingAlign('center');
table2.setColHeading(1l, 'Header 1');
table2.setColHeading(2, 'Header 2');
table2.setColHeading (3, 'Header 3');
tablel.setHeading('Table 1');
tablel.setEntry(1,1,table2);

7-87

7 Create Model Advisor Checks

Table 1

| Table 2
|Header 1 |Header 2 |Header 3

This example creates a table with five rows and five columns containing randomly
generated numbers. Use the MATLAB code in a callback function to create the table. The
Model Advisor displays tablel in the results.

% ModelAdvisor.Table example
matrixData = rand(5,5) * 1075;

% initialize a table with 5 rows and 5 columns (heading rows not counting)
tablel = ModelAdvisor.Table(5,5);

% set column headings
for n=1:5

tablel.setColHeading(n, ['Column ', num2str(n)l]);
end

% set alignment of second column heading
tablel.setColHeadingAlign(2, 'center');

% set column width of second column
tablel.setColWidth(2, 3);

% set row headings
for n=1:5

tablel.setRowHeading(n, ['Row ', num2str(n)l);
end

% set Table content
for rowIndex=1:5
for colIndex=1:5
tablel.setEntry(rowIndex, colIndex, ...
num2str(matrixData(rowIndex, colIndex)));

% set alignment of entries in second row
if colIndex ==
tablel.setEntryAlign(rowIndex, colIndex, 'center');
end
end
end

% overwrite content of cell 3,3 with a ModelAdvisor.Text

7-88

Format Check Results

text = ModelAdvisor.Text('Example Text');
tablel.setEntry(3,3, text)

| ”Cuhmul ” Colummn 2 ”CuhmuS ”Cuhmud ”Cuhmui |
[Row 1 |81472.3686 || 9754.0405 15761.3082 |[14188.6339 ||65574.0699 |
[Row 2 90579.1937 || 27849.8219 |97059.2782 ||42176.1283 |[3571.1679 |
[Row 3 112698.6816 || 54688.1519 |Example Text||91573.5525 ||84912.9306 |
[Rowd [|91337.5856 | 93750.6835 |48537.3649 ||79220.733 ||93399.3248 |
[Row 5 63235.9246 || 96488.8535 180028.0469 |95949.2426 ||67873.5155 |

Format Paragraphs

You must handle paragraphs explicitly because most markup languages do not support
line breaks. The default paragraph formatting is:

* Empty

» Default color (black)

* Unformatted, (not bold, italicized, underlined, linked, subscripted, or superscripted)
» Aligned left

If you want to change paragraph formatting, use the ModelAdvisor.Paragraph class.

Formatted Output

The following is the example from “Simple Check Callback Function” on page 7-58,
reformatted using the Model Advisor Formatting API.

function result = SampleStyleOneCallback(system)
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);
if strcmp(get param(bdroot(system), 'ScreenColor'),'white')
result = ModelAdvisor.Text('Passed',{'pass'});
mdladvObj.setCheckResultStatus(true);
else
msgl = ModelAdvisor.Text(...
['It is recommended to select a Simulink window screen color'...
' of white to ensure a readable and printable model. Click ']);
msg2 = ModelAdvisor.Text('here');
msg2.setHyperlink('matlab: set param(bdroot,''ScreenColor'',''white'")");
msg3 = ModelAdvisor.Text(' to change screen color to white.');
result = [msgl, msg2, msg3];

7-89

7 Create Model Advisor Checks

7-90

mdladvObj.setCheckResultStatus(false);
end

Format Linebreaks

You can add a line break between two lines of text with the ModelAdvisor.LineBreak
constructor.

result = ModelAdvisor.Paragraph;
addItem(result, [resultTextl ModelAdvisor.LineBreak resultText2]);

Format Images

To include an image in Model Advisor output, use the ModelAdvisor.Image constructor.
To create an Image object, use this syntax.

image_obj = ModelAdvisor.Image;

See Also
ModelAdvisor.Check | ModelAdvisor.FormatTemplate | ModelAdvisor.Task

Related Examples
. “Simple Check Callback Function” on page 7-58

More About

. Defining Custom Groups on page 8-14
. “Define Custom Checks” on page 7-47

Create Custom Configurations by
Organizing Checks and Folders

8 Create Custom Configurations by Organizing Checks and Folders

Create Custom Configurations

8-2

You can use the Model Advisor APIs and Model Advisor Configuration Editor available
with Simulink Check to do the tasks listed in the following table.

To

See

Create custom configurations by organizing | “Organize Checks and Folders Using the

Model Advisor checks and folders.

Model Advisor Configuration Editor” on
page 8-5

Specify the order in which you make
changes to your model.

“Create Procedural-Based Configurations”
on page 9-5

Deploy custom configuration to your users.

“How to Deploy Custom Configurations” on
page 10-3

Create Configurations by Organizing Checks and Folders

Create Configurations by Organizing Checks and Folders

To customize the Model Advisor with MathWorks and custom checks, perform the
following tasks:

1 Review the information in “Requirements for Customizing the Model Advisor” on
page 6-2.

2 Optionally, author custom checks in a customization file. See “Create Model Advisor
Checks”.

3 Organize the checks into new and existing folders to create custom configurations.
See “Organize and Deploy Model Advisor Checks”.
a Identify which checks you want to include in your custom Model Advisor
configuration. You can use MathWorks checks and/or custom checks.
b Create the custom configurations using either of the following:
* Model Advisor Configuration Editor - “Organize Checks and Folders Using the
Model Advisor Configuration Editor” on page 8-5.

* A customization file - “Organize Customization File Checks and Folders” on
page 8-12.

¢ Verify the custom configuration. See “Verify and Use Custom Configurations” on
page 8-18.

4 Optionally, deploy the custom configurations to your users. See “Organize and Deploy
Model Advisor Checks”.

5 Verify that models comply with modeling guidelines. See “Run Model Advisor Checks
and Review Results” on page 3-5.

8-3

8 Create Custom Configurations by Organizing Checks and Folders

Create Procedural-Based Configurations

You can create a procedural-based configuration that allows you to specify the order in
which you make changes to your model. You organize checks into procedures using the
procedures API. A check in a procedure does not run until the previous check passes. A
procedural-based configuration runs until a check fails, requiring you to modify the model
to pass the check and proceed to the next check. Changes you make to your model to pass
the checks therefore follow a specific order.

To create a procedural-based configuration, perform the following tasks:

1 Review the information in “Requirements for Customizing the Model Advisor” on
page 6-2.
Decide on order of changes to your model.

Identify checks that provide information about the modifications you want to make to
your model. For example, if you want to modify your model optimization settings, the
Check optimization settings check provides information about the settings. You can
use custom checks and checks provided by MathWorks.

4 Optionally, author custom checks in a customization file. See “Create Model Advisor
Checks”.

5 Organize the checks into procedures for a procedural-based configuration. See
“Create Procedural-Based Configurations” on page 9-5.
a Create procedures using the procedure API. For detailed information, see
“Create Procedures Using the Procedures API” on page 9-2.

b Create the custom configuration by using a customization file. See “Organize
Customization File Checks and Folders” on page 8-12.

¢ Verify the custom configuration as described in “Verify and Use Custom
Configurations” on page 8-18.

6 Optionally, deploy the custom configurations to your users. For detailed information,
see “Organize and Deploy Model Advisor Checks”.

7 Verify that models comply with modeling guidelines. For detailed information, see
“Run Model Advisor Checks and Review Results” on page 3-5.

8-4

Organize Checks and Folders Using the Model Advisor Configuration Editor

Organize Checks and Folders Using the Model Advisor
Configuration Editor

Overview of the Model Advisor Configuration Editor

The Model Advisor Configuration Editor allows you to specify the checks that you want to
use for edit-time checking, as well as the checks included in the Model Advisor. The
Model Advisor Configuration Editor interface consists of two windows, the Model Advisor
Configuration Editor and Model Advisor Check Browser

The Model Advisor Configuration Editor window contains two panes:

* Hierarchy - Lists the checks and folders in the current configuration
* Workflow - Defines the common workflow you use to create a custom configuration

You can use the Show field to specify the Model Advisor checks that are included in the
hierarchy:

* Edit-Time Supported Checks — hierarchy only includes the Model Advisor checks
that are supported as edit-time checks

* All checks — hierarchy includes all of the Model Advisor checks

8 Create Custom Configurations by Organizing Checks and Folders

(> Model Advisor Configuration Editor - Untitled (=] ===
File Edit View Help
= 5 & Find: v <@ 5> Show: [All Checks -

Current Configuration: Untitled
4 @ Model Advisor Configura

Workflow

> [[E) By Product A

s I3 By Task

Model Advisor Configuration Editor

»

The Meodel Advisor Configuration Editor expedites customizing and deploying Model Advisor configurations. The
following is a typical workflow.

m

1. Author custom checks.

2. Organize checks and create custom configurations.

3. Deploy custom configurations.

4. Verify model complies with modeling guidelines.

4 L1 2

Model Advisor Configuration Editor
When you select a folder or check in the hierarchy, the Workflow pane changes to display

information about the check or folder. You can change the display name of the check or
folder in this pane.

8-6

Organize Checks and Folders Using the Model Advisor Configuration Editor

(£ Model Advisor Configuration Editor - Untitled * = O X

File Edit WView Help

D 6 H 3‘ % X ‘ [ﬁ @g Find: *C,'Zl E:P 1 of 5: Found in check name. Show: el

‘Current Configuration: Untitled

Model Advi Configuration Editor

hd @ Model Advisor Configuration Editor e Tt of Abs blocks (~Tri Update Di) N
eCK Uusage S DiOCH Ers ate ram
> |:|) By Product 2 L =
v [] [By Task Display Name: Check usage of Abs blocks
» [] 5 Modeling Physical Systems
» [(& Simulink Code Inspector compatibiity checks Check Instance ID: _SYSTEM_By Task_his|_IEC62304.simulink_mathworks.hism.his|_0001
> I:‘ =3 Model ing Standards for DO-178C/D0-331
> [0 £ Modeling Standards for IEC 61508 T Check usage of Abs blocks
~ [IE2) Modeling Standards for IEC 62304
“Displ fi il t dat
[EZ] ~Display configuration management data ey = hism.hisl_0001
isplay model metrics and complexity report
[E= Displ del metrics and lexi
|:| =] check for unconnected objects TR o TR
]) isl_ : Usage
w [] I[I3) High-Integrity Systems Description:
v D C3 simutink Identify Abs blocks that have unreachable code or produce overflows
[EE] ~cneck usage of Abs biocks
Check f Math Function blocks
[(5] Check usage of Math Function blocks FELIE Simulink; Simulink Check
[1 E=] check usage of Math Function blocks | Association:
I:‘ =] check usage of While Iterator blocks
D |:| Check usage of For and While Iterator Input Parameters
*Check f For Iterator blocks
[J L] ~Checic usage of For Iterator blod Follow links | on ~ | Look under masks [al -
D E] ~check usage of If blocks and If Actiol v
D =]l ~Check usage of Switch Case blocks a
[1 F=1 ~Check usace of conditionallv execute ¥ Help Apply
< >

The Model Advisor Check Browser window includes a read-only list of available checks. If
you delete a check in the Model Advisor Configuration Editor, you can retrieve a copy of it
from the Model Advisor Check Browser.

8 Create Custom Configurations by Organizing Checks and Folders

(2 Model Adviser Check Browser EI@
Find: v a5
Model Advisor Check Browser
Fl Model Advisor Check Browser - -
4 By Product L=
4 Simulink Drag and drop checks from the Check Browser into

Identify unconnected = the Configuration Editor.

1

Check root model Inp
Check diagnostic settil |
Check optimization s
Check for parameter 1
Check for implicit sigr
Check for optimal bus
Check for calls to sID:
Check for Discrete-Tir
Identify disabled libra
Identify parameterize
Identify unresolved lit
Identify variant block:

Identify configurable | « p—

4 (L 2

Model Advisor Check Browser

This table specifies additional actions you can perform by using the Model Advisor
Configuration Editor.

To... Select...
Create new configurations File > New
Find checks and folders in the Model Advisor View > Check Browser

Check Browser

Add checks and folders to the configuration Edit > Copy

Edit > Paste

Edit > New folder

The check or folder and drag and drop

Remove checks and folders from the Edit > Delete
configuration Edit > Cut

8-8

Organize Checks and Folders Using the Model Advisor Configuration Editor

To...

Select...

Reorder checks and folders

Edit > Move up
Edit > Move down
The check or folder and drag and drop

Rename checks and folders

Note MathWorks folder display names are
restricted. When you rename a folder, you cannot
use the restricted display names.

The check or folder and edit Display Name in
right pane.

Allow or gray out the check box control for
checks and folders

Tip This capability is equivalent to enabling
checks, described in “Display and Enable
Checks” on page 7-48.

Edit > Enable
Edit > Disable

Save the configuration as a MAT file for use and
distribution

File > Save
File > Save As

Set the configuration so it opens by default in the
Model Advisor

File > Set Current Configuration as Default

Restore the MathWorks default configuration

File > Restore Default Configuration

Load and edit saved configurations

File > Open

Open the Model Advisor Configuration Editor

Prior to opening the Model Advisor Configuration Editor, verify that the current folder is
writable. If the folder is not writable, you see an error message when you start the Model

Advisor Configuration Editor.

Note

* The Model Advisor Configuration Editor uses the slprj folder in the code generation
folder (Simulink). If the slprj folder does not exist in the code generation folder, the
Model Advisor Configuration Editor creates it.

8-9

8 Create Custom Configurations by Organizing Checks and Folders

8-10

To include custom checks in the new Model Advisor configuration, update the
Simulink environment to include your sl _customization.m file.

Start the Model Advisor Configuration Editor using one of these methods:
* Programmatically — At the MATLAB command line, enter
Simulink.ModelAdvisor.openConfigUI.

* From the Simulink editor — In the Modeling tab, select Model Advisor >
Customize Edit-time Checks

* From the Model Advisor — Select Settings > Open Configuration Editor

The Model Advisor Configuration Editor and Model Advisor Check Browser windows
open.

To specify the Model Advisor checks that you want to include in the Configuration

Editor hierarchy, in the Show field, select:

* Edit-Time Supported Checks — hierarchy only includes the Model Advisor
checks that are supported as edit-time checks

* All checks — hierarchy includes all of the Model Advisor checks

Organize Checks and Folders Using the Model Advisor
Configuration Editor

The following tutorial steps you through creating a custom configuration.

1
2

D AW

Open the Model Advisor Configuration Editor on page 8-9.

In the Model Advisor Configuration Editor, in the left pane, delete the By Product
and By Task folders, to start with a blank configuration.

Select the root node, which is labeled Model Advisor Configuration Editor.
In the toolbar, click the New Folder button to create a folder.
In the left pane, select the new folder.

In the right pane, edit Display Name to rename the folder. For the purposes of this
tutorial, rename the folder to Review Optimizations.

In the Model Advisor Check Browser window, in the Find field, enter optimization
to find Simulink > Check optimization settings.

Drag and drop Check optimization settings into Review Optimizations.

See Also

10

11
12
13
14
15

In the Model Advisor Check Browser window, find Simulink Check > Modeling
Standards > DO-178C/D0-331Checks > Check safety-related optimization
settings.

Drag and drop Check safety-related optimization settings into Review
Optimizations.

In the Model Advisor Configuration Editor window, expand Review Optimizations.
Rename Check optimization settings to Check Simulink optimization settings.
Select File > Save As to save the configuration.

Name the configuration optimization configuration.mat.

Close the Model Advisor Configuration Editor window.

Tip To move a check to the first position in a folder:

1 Drag the check to the second position.
2 Right-click the check and select Move up.
See Also

Simulink.ModelAdvisor | ModelAdvisor.Check

Related Examples

“Update the Environment to Include Your sl customization File” on page 8-18

8-11

8 Create Custom Configurations by Organizing Checks and Folders

Organize Customization File Checks and Folders

Customization File Overview

The s1_customization.m file contains a set of functions for registering and defining
custom checks, tasks, and groups. To set up the sl _customization.m file, follow the
guidelines in this table.

Note If the By Product folder is not displayed in the Model Advisor window, select Show
By Product Folder from the Settings > Preferences dialog box.

Function Description Required or Optional

sl customization() Registers custom checks and Required for customizations to
tasks, folders with the Simulink |the Model Advisor.
customization manager at
startup. See “Register Checks”
on page 7-42.

One or more check definitions |Defines custom checks. See Required for custom checks and
“Define Custom Checks” on to add custom checks to the By
page 7-47. Product folder.

One or more task definitions Defines custom tasks. See Required to add custom checks
“Define Custom Tasks” on page |to the Model Advisor, except
8-14. when adding the checks to the

By Product folder. Write one
task for each check that you add
to the Model Advisor.

One or more groups Defines custom groups. See Required to add custom tasks to
“Define Custom Tasks” on page |new folders in the Model
8-14. Advisor, except when adding a

new subfolder to the By
Product folder. Write one group
definition for each new folder.

8-12

Organize Customization File Checks and Folders

Register Tasks and Folders
Create sl_customization Function
To add tasks and folders to the Model Advisor, create the s1 customization.m file on

your MATLAB path. Then create the s1_customization() function in the
sl customization.m file on your MATLAB path.

Tip
* You can have more than one sl _customization.m file on your MATLAB path.

* Do not place an sl _customization.m file that customizes the Model Advisor in your
root MATLAB folder or its subfolders, except for the matlabroot/work folder.
Otherwise, the Model Advisor ignores the customizations that the file specifies.

The s1 _customization function accepts one argument, a customization manager
object, as in this example:

function sl customization(cm)

The customization manager object includes methods for registering custom checks, tasks,
and folders. Use these methods to register customizations specific to your application, as
described in the sections that follow.

Register Tasks and Folders

The customization manager provides the following methods for registering custom tasks
and folders:

* addModelAdvisorTaskFcn (@factorygroupDefinitionFcn)

Registers the tasks that you define in factorygroupDefinitionFcn to the By Task
folder of the Model Advisor.

The factorygroupDefinitionFcn argument is a handle to the function that defines
the checks to add to the Model Advisor as instances of the
ModelAdvisor.FactoryGroup class.

* addModelAdvisorTaskAdvisorFcn (@taskDefinitionFcn)

8-13

8 Create Custom Configurations by Organizing Checks and Folders

Registers the tasks and folders that you define in taskDefinitionFcn to the folder
in the Model Advisor that you specify using the ModelAdvisor.Root.publish
method or the ModelAdvisor.Group class.

The taskDefinitionFcn argument is a handle to the function that defines custom
tasks and folders. Simulink adds the checks and folders to the Model Advisor as
instances of the ModelAdvisor.Task or ModelAdvisor.Group classes.

The following example shows how to register custom tasks and folders:

Note If you add custom checks within the s1_customization.m file, include methods
for registering the checks in the s1_customization function.

Define Custom Tasks
Add Check to Custom or Multiple Folders Using Tasks

You can use custom tasks for adding checks to the Model Advisor, either in multiple
folders or in a single, custom folder. You define custom tasks in one or more functions that
specify the properties of each instance of the ModelAdvisor.Task class. Define one
instance of this class for each custom task that you want to add to the Model Advisor.
Then register the custom task. The following sections describe how to define custom
tasks.

To add a check to multiple folders or a single, custom folder:

Create a check using the ModelAdvisor.Check class.
Register a task wrapper for the check.

If you want to add the check to folders that are not already present, register and
create the folders using the ModelAdvisor.Group class.

Add a check to the task using the ModelAdvisor.Task.setCheck method.

5 Add the task to each folder using the ModelAdvisor.Task.addTask method and
the task ID.

Create Custom Tasks Using MathWorks Checks

You can add MathWorks checks to your custom folders by defining the checks as custom
tasks. When you add the checks as custom tasks, you identify checks by the check ID.

8-14

Organize Customization File Checks and Folders

To find MathWorks check IDs:

In the hierarcy, navigate to the folder that contains the MathWorks check.

2 In the right pane of the Model Advisor, select the Source tab. The Model Advisor
displays the Title, TitleID, and Source information for each check in the folder.

Note If the Source tab is not available, open Settings > Preferences and select
Show Source Tab

3 Select and copy the TitleID of the check that you want to add as a task.

Display and Enable Tasks

The Visible, Enable, and Value properties interact the same way for tasks as they do
for checks.

Define Where Tasks Appear

You can specify where the Model Advisor places tasks within the Model Advisor using the
following guidelines:

* To place a task in a new folder in the Model Advisor Task Manager, use the
ModelAdvisor.Group class.

* To place a task in a new folder in the By Task folder, use the
ModelAdvisor.FactoryGroup class.

Task Definition Function

The following example shows a task definition function. This function defines three tasks.

Define Custom Folders
About Custom Folders

Use folders to group checks in the Model Advisor by functionality or usage. You define
custom folders in:

* A factory group definition function that specifies the properties of each instance of the
ModelAdvisor.FactoryGroup class.

8-15

8 Create Custom Configurations by Organizing Checks and Folders

8-16

* A task definition function that specifies the properties of each instance of the
ModelAdvisor.Group class.

Define one instance of the group classes for each folder that you want to add to the Model
Advisor.

Add Custom Folders

To add a custom folder:

1 Create the folder using the ModelAdvisor.Group or
ModelAdvisor.FactoryGroup classes.

2 Register the folder.

Define Where Custom Folders Appear

You can specify the location of custom folders within the Model Advisor using the
following guidelines:

* To define a new folder in the Model Advisor Task Manager, use the
ModelAdvisor.Group class.

» To define a new folder in the By Task folder, use the ModelAdvisor.FactoryGroup
class.

Note To define a new folder in the By Product folder, use the
ModelAdvisor.Root.publish method within a custom check. If the By Product folder
is not displayed in the Model Advisor window, select Show By Product Folder from the
Settings > Preferences dialog box.

Group Definition

The following examples shows a group definition. The definition places the tasks inside a
folder called My Group under the Model Advisor root. The task definition function
includes this group definition.

The following example shows a factory group definition function. The definition places the
checks into a folder called Demo Factory Group inside of the By Task folder.

See Also

Customization Example

The Simulink Check software provides an example that shows how to customize the
Model Advisor by adding:

* Custom checks

* Check input parameters

* Check actions

* Check list views to call the Model Advisor Result Explorer

* Custom tasks to include the custom checks in the Model Advisor

* Custom folders for grouping the checks

* Custom procedures

The example also provides the source code of the s1_customization.m file that
executes the customizations.

To run the example:

1 At the MATLAB command line, typeslvnvdemo mdladv.
2 Follow the instructions in the model.

See Also

ModelAdvisor.Check | ModelAdvisor.FactoryGroup | ModelAdvisor.Group |
ModelAdvisor.Task | publish

Related Examples

. “Update the Environment to Include Your sl customization File” on page 8-18

More About

. “Define Custom Checks” on page 7-47
. “Display and Enable Checks” on page 7-48
. “Register Checks” on page 7-42

8-17

8 Create Custom Configurations by Organizing Checks and Folders

Verify and Use Custom Configurations

8-18

Update the Environment to Include Your sl_customization File

When you start Simulink, it reads customization (s1 customization.m) files. If you
change the contents of your customization file, update your environment by performing
these tasks:

1

If you previously started the Model Advisor:

a Close the model from which you started the Model Advisor

b Clear the data associated with the previous Model Advisor session by removing
the slprj folder from your code generation folder (Simulink).

If you have created custom checks, at the MATLAB command line, enter:

Advisor.Manager.refresh customizations
Open your model.
Start the Model Advisor.

Verify Custom Configurations

To verify a custom configuration:

1

If you created custom checks, or created the custom configuration using the
sl customization method, update the Simulink environment.

Open a model.
From the model window, start the Model Advisor.

Select Settings > Load Configuration. If you see a warning that the Model Advisor
report corresponds to a different configuration, click Load to continue.

In the Open dialog box, navigate to and select your custom configuration.

When the Model Advisor reopens, verify that the configuration contains the new
folders and checks. For example, the Review Optimizations folder and the Check
Simulink optimization settings and Check safety-related optimization settings
checks.

Optionally, run the checks.

See Also

See Also

More About

. “Organize Checks and Folders Using the Model Advisor Configuration Editor” on
page 8-5

8-19

8 Create Custom Configurations by Organizing Checks and Folders

Customize Model Advisor Check for Nondefault Block
Attributes
You can customize the list of nondefault block parameters that are flagged by the Model

Advisor MAAB check Check for nondefault block attributes
(mathworks.maab.db 0140).

8-20

1 In the Model Advisor, select Settings > Open Configuration Editor.

2 Use the Find field to search for check ID db _0140. The Model Advisor Configuration
Editor window displays the check Check for nondefault block attributes.

3 To enable editing of the parameter list, on the right pane, select Input Parameters
> Standard > Custom.

4 In the table, use the Parameter cell to edit the default parameter value for the block
type . The parameters are separated with spaces.

5 Delete or add a parameter name that corresponds to the BlockType. For example, to
remove the rounding method parameter from the check for each gain block, find
Gain under BlockType. Under Parameter, delete the parameter name RndMeth.
Check ID: mathworks.maab.db 0140 no longer checks for the display of
nondefault rounding methods from gain blocks’ annotations.

See Also

More About

“Check for nondefault block attributes”
“Customize Model Advisor Check for Nondefault Block Attributes” on page 8-20
db 0140: Display of basic block parameters

Automatically Fix Display of Nondefault Block Parameters

Automatically Fix Display of Nondefault Block
Parameters

To conform with Model Advisor MAAB check Check for nondefault block attributes
(mathworks.maab.db 0140), you can use the Add nondefault values into block
annotation button to automatically add descriptive text to the model editor window.

1

6

At the command prompt, type vdp and press Enter to open the van der Pol
Equation model.

The model has two blocks which do not display nondefault values as annotations.
From the Modeling tab, select Model Advisor to open the Model Advisor.

Select By Product > Simulink Check > Modeling Standards > MAAB Checks.
On the right pane, run the check by selecting Run Selected Checks.

The Model Advisor runs the check and displays a warning for the integrator block
that has a nonzero initial condition not currently displayed. On the Model Advisor
toolbar, select Highlighting > Enable Highlighting to highlight the blocks causing
the warning.

In the right pane of the Model Advisor window, select Add nondefault values into
block annotation to automatically add the nondefault attribute and value to the
integrator block’s annotation. Model Advisor displays InitialCondition = 2.

Run the check again to clear the warning.

8-21

8 Create Custom Configurations by Organizing Checks and Folders

8-22

See Also

More About

“Check for nondefault block attributes”

“Automatically Fix Display of Nondefault Block Parameters” on page 8-21
db 0140: Display of basic block parameters

“Run Model Advisor Checks and Review Results” on page 3-5

Create Procedural-Based Model
Advisor Configurations

O Create Procedural-Based Model Advisor Configurations

Create Procedures

9-2

What Is a Procedure?

A procedure is a series of checks. The checks in a procedure depend on passing the
previous checks. If Check A is the first check in a procedure and Check B follows, the
Model Advisor does not run Check B until Check A passes. Checks A and B can be either
custom or provided by MathWorks.

You create procedures with the ModelAdvisor.Procedure class API. You first add the
checks to tasks, which are wrappers for the checks. The tasks are added to procedures.

When creating procedural checks, be aware of potential conflicts with the checks. Verify
that it is possible to pass both checks.

Create Procedures Using the Procedures API

You use the ModelAdvisor.Procedure class to create procedural checks.
1 Add each check to a task using the ModelAdvisor.Task.setCheck method. The
task is a wrapper for the check. You cannot add checks directly to procedures.

2 Add each task to a procedure using the ModelAdvisor.Procedure.addTask
method.

Define Procedures

You define procedures in a procedure definition function that specifies the properties of
each instance of the ModelAdvisor.Procedure class. Define one instance of the
procedure class for each procedure that you want to add to the Model Advisor. Then
register the procedure using the ModelAdvisor.Root. register method.

Add Subprocedures and Tasks to Procedures

You can add subprocedures or tasks to a procedure. The tasks are wrappers for checks.

* Use the ModelAdvisor.Procedure.addProcedure method to add a subprocedure
to a procedure.

* Use the ModelAdvisor.Procedure.addTask method to add a task to a procedure.

Create Procedures

Define Where Procedures Appear

You can specify where the Model Advisor places a procedure using the
ModelAdvisor.Group.addProcedure method.

Procedure Definition

The following code example adds procedures to a group:

%Create three procedures

MAP1=ModelAdvisor.Procedure('com.mathworks.sample.myProcedurel');
MAP2=ModelAdvisor.Procedure('com.mathworks.sample.myProcedure2');
MAP3=ModelAdvisor.Procedure('com.mathworks.sample.myProcedure3"');

%sCreate a group
MAG = ModelAdvisor.Group('com.mathworks.sample.myGroup');

%Add the three procedures to the group
addProcedure(MAG, MAP1);
addProcedure(MAG, MAP2);
addProcedure(MAG, MAP3);

%register the group and procedures
mdladvRoot = ModelAdvisor.Root;
mdladvRoot.register(MAG);
mdladvRoot.register(MAP1);
mdladvRoot.register(MAP2);
mdladvRoot.register(MAP3);

The following code example adds subprocedures to a procedure:

%Create a procedure
MAP = ModelAdvisor.Procedure('com.mathworks.example.Procedure');

%Create 3 sub procedures

MAP1=ModelAdvisor.Procedure('com.mathworks.example.procedure subl')
MAP2=ModelAdvisor.Procedure('com.mathworks.example.procedure sub2')
MAP3=ModelAdvisor.Procedure('com.mathworks.example.procedure sub3');

’
’

%Add sub procedures to procedure
addProcedure(MAP, MAP1);
addProcedure(MAP, MAP2);
addProcedure(MAP, MAP3);

%sregister the procedures

9-3

O Create Procedural-Based Model Advisor Configurations

mdladvRoot = ModelAdvisor.Root;
mdladvRoot.register(MAP);
mdladvRoot.register(MAP1);
mdladvRoot.register(MAP2);
mdladvRoot.register(MAP3);

The following code example adds tasks to a procedure:

%Create three tasks

MAT1=ModelAdvisor.Task('com.mathworks.tasksample.myTaskl');
MAT2=ModelAdvisor.Task('com.mathworks.tasksample.myTask2');
MAT3=ModelAdvisor.Task('com.mathworks.tasksample.myTask3');

%Create a procedure
MAP = ModelAdvisor.Procedure('com.mathworks.tasksample.myProcedure');

%Add the three tasks to the procedure
addTask(MAP, MAT1);
addTask(MAP, MAT2);
addTask(MAP, MAT3);

%register the procedure and tasks
mdladvRoot = ModelAdvisor.Root;
mdladvRoot.register(MAP);
mdladvRoot.register(MATL1);
mdladvRoot.register(MAT2);
mdladvRoot.register(MAT3);

See Also

ModelAdvisor.Procedure | addProcedure | addTask | register | setCheck

Related Examples

. “Create Procedural-Based Configurations” on page 9-5

More About
. “Define Custom Tasks” on page 8-14

9-4

Create Procedural-Based Configurations

Create Procedural-Based Configurations

Overview of Procedural-Based Configurations

You can create a procedural-based configuration that allows you to specify the order in
which you make changes to your model. You organize checks into procedures using the
procedures API. A check in a procedure does not run until the previous check passes. A
procedural-based configuration runs until a check fails, requiring you to modify the model
to pass the check and proceed to the next check. Changes you make to your model to pass
the checks therefore follow a specific order.

To create a procedural-based configuration, perform the following tasks:

1

Review the information in “Requirements for Customizing the Model Advisor” on
page 6-2.

Decide on order of changes to your model.

Identify checks that provide information about the modifications you want to make to
your model. For example, if you want to modify your model optimization settings, the

Check optimization settings check provides information about the settings. You can
use custom checks and checks provided by MathWorks.

Optionally, author custom checks in a customization file. See “Create Model Advisor
Checks”.

Organize the checks into procedures for a procedural-based configuration. See

“Create Procedural-Based Configurations” on page 9-5.

a Create procedures using the procedure API. For detailed information, see
“Create Procedures Using the Procedures API” on page 9-2.

b Create the custom configuration by using a customization file. See “Organize
Customization File Checks and Folders” on page 8-12.

¢ Verify the custom configuration as described in “Verify and Use Custom
Configurations” on page 8-18.

Optionally, deploy the custom configurations to your users. For detailed information,
see “Organize and Deploy Model Advisor Checks”.

Verify that models comply with modeling guidelines. For detailed information, see
“Run Model Advisor Checks” (Simulink).

O Create Procedural-Based Model Advisor Configurations

9-6

Create a Procedural-Based Configuration

In this example, you examine a procedural-based configuration.

At the MATLAB command line, typeslvnvdemo mdladv.

In the model window, select View demo sl_customization.m. The
sl customization.m file opens in the MATLAB Editor window.

The file contains four checks created in the function defineModelAdvisorChecks:

* ModelAdvisor.Check('com.mathworks.sample.Checkl') - Checks
Simulink block fonts.

* ModelAdvisor.Check('com.mathworks.sample.Check2') - Checks
Simulink window screen color.

* ModelAdvisor.Check('com.mathworks.sample.Check3"') - Checks model
optimization settings.

* ModelAdvisor.Check('com.mathworks.sample.Check4') - Checks Gain
block usage.

Each check has a set of fix actions.
3 Inthe sl customization.m file, examine the function defineTaskAdvisor.

* The ModelAdvisor.Procedure class API creates procedures My Procedure
and My sub Procedure:

% Define procedures
MAP = ModelAdvisor.Procedure('com.mathworks.sample.ProcedureSample');
MAP.DisplayName='My Procedure’;

MAP_sub = ModelAdvisor.Procedure('com.mathworks.sample.sub ProcedureSample');
MAP_sub.DisplayName='My sub Procedure';

* The ModelAdvisor.Task class API creates tasks MAT4, MAT5, MAT6, and MAT7.
The ModelAdvisor.Task.setCheck method adds the checks to the tasks:

% Define tasks

MAT4 = ModelAdvisor.Task('com.mathworks.sample.TaskSample4');
MAT4.DisplayName='Check Simulink block font';
MAT4.setCheck('com.mathworks.sample.Checkl"');
mdladvRoot.register(MAT4);

MAT5 = ModelAdvisor.Task('com.mathworks.sample.TaskSample5');
MAT5.DisplayName='Check Simulink window screen color';
MAT5.setCheck('com.mathworks.sample.Check2"');
mdladvRoot.register(MAT5);

Create Procedural-Based Configurations

4

5

6

MAT6 = ModelAdvisor.Task('com.mathworks.sample.TaskSample6');
MAT6.DisplayName='Check model optimization settings';
MAT6.setCheck('com.mathworks.sample.Check3"');
mdladvRoot.register(MAT6) ;

MAT7 = ModelAdvisor.Task('com.mathworks.sample.TaskSample7');
MAT7.DisplayName='Check gain block usage';
MAT7.setCheck('com.mathworks.sample.Check4');
mdladvRoot.register(MAT7);

* The ModelAdvisor.Procedure.addTask method adds task MAT4 to My
Procedure and tasks MAT5, MAT6, and MAT7 to My sub Procedure. The
ModelAdvisor.Procedure.addProcedure method adds My sub Procedure
toMy Procedure:

% Add tasks to procedures:

% Add Task4 to MAP

MAP.addTask (MAT4) ;

% Now Add Task5 and Task6 to MAP_ sub
MAP_sub.addTask(MAT5) ;
MAP_sub.addTask (MAT6) ;
MAP_sub.addTask(MAT7);

% Include the Sub-Procedure in the Procedure
MAP.addProcedure(MAP_sub);

In the Modeling tab, select Model Advisor. A System Selector — Model Advisor
dialog box opens. Click OK. The Model Advisor opens.

In the left pane, expand My Procedure > My sub_Procedure.

4 Model Advisor

; =1 By Product

» 1 By Task

> =1 My Group

4 IIF My Procedure

| Check Simulink block font
a 0% My sub_Procedure

| Check Simulink window screen color
‘| Check model optimization settings

In the left pane of the Model Advisor, select My Procedure. In the right pane of the
Model Advisor, click Run Selected Checks. The Model Advisor Check Simulink
block font check fails. The Model Advisor does not check the remaining two checks in
the My sub Procedure folder. Running the checks in the My sub Procedure folder
depends on passing the Check Simulink block font check.

O Create Procedural-Based Model Advisor Configurations

9-8

In the Action section of the Model Advisor dialog box, click Fix block fonts.

In the left pane of the Model Advisor, select My Procedure. In the right pane of the
Model Advisor, click Run Selected Checks. The Check Simulink block font check
passes. The Model Advisor runs the Check Simulink window screen color check. This
check fails and the Model Advisor stops checking.

9 In the Action section of the Model Advisor dialog box, click Fix window screen
color.

10 In the left pane of the Model Advisor, select My sub_Procedure. In the right pane of
the Model Advisor, click Run Selected Checks. The Check Simulink window screen
color check passes. The Model Advisor runs the Check model optimization settings
check. This check warns.

11 In the Action section of the Model Advisor dialog box, click Fix model optimization
settings.

12 In the left pane of the Model Advisor, select Check model optimization settings. In the
right pane of the Model Advisor, click Run This Task. The Check model optimization
settings check passes.

4 Model Advisor

¥| |1 By Product

V| I By Task

V| I My Group

4 |G My Procedure
0 Check Simulink block font

4 lGg My sub_Procedure
0 Check Simulink window screen colar
Q Check model optimization settings

See Also

ModelAdvisor.Procedure | addProcedure | addTask | register | setCheck

More About

“Create Procedures” on page 9-2
“Define Custom Checks” on page 7-47

Add Checks and Tasks to the Model Advisor

Add Checks and Tasks to the Model Advisor

This example shows how to customize the Model Advisor using a MATLAB-based API.
Open the Example Model

Open the example model slvnvdemo mdladv.

sturm:lemo_mdladv » -

Description:
This example shows how to customize the Model Advisor using a
MATLAB-based API.

Instructions:

1) Click the Launch Model Advisor button to launch the Model
Advisor. If the dashboard opens, click Switch to Model Advisor
to open the Model Advisor window. This example has:

- New checks in the By Task > My Group 2 folder

- Top-level folder My Group

- Top-level folder My Procedure containing one check and a
subprocedure My sub_Procedure

2) Expand the My Group folder
- Select the first check
- Click Run this Check
- To examine the results, click Explore Result
- To automatically fix issues, click Fix block fonts

3) Expand the My Procedure folder
- To run the procedure, click Run All. The procedure will run

until a check fails.
Click here for more details on customizing the Model Advisor. - To automatically fix issues, in the Action section of the right pane
of the Model Advisor window, click the corresponding fix button.

4) To view the customization source code, click View demo

sl_customization.m.

Closing this example model automatically restores the factory default settings.

‘Copyright 2005-2017 The MathWarks, Inc.

Open the Model Advisor
In the Modeling tab, select Model Advisor to open the Model Advisor.

In the System Selector dialog, click OK. For this example, the Model Advisor contains:

* Hidden shipping checks
* New checks in the By Task > My Group 2 folder

9-9

O Create Procedural-Based Model Advisor Configurations

9-10

Top-level folder My Group

Top-level folder My Procedure that contains once check and a subprocedure My
sub_Procedure

Explore the Custom Folder

Explore the custom My Group folder:

In the left pane, click the My Group folder.
Select the first check, Example task with input parameter and auto-fix ability.
In the right pane, click Run This Check.

To examine the results in the Model Advisor Results Explorer dialog, click Explore
Result.

To automatically fix the issues, return to the Model Advisor and, in the right pane,
click Fix block fonts.

Explore the Custom Procedure Folder

Explore the custom My Procedure folder:

In the left pane, click the My Procedure folder.

To run the procedure, in the right pane, click Run Selected Checks. The procedure
runs until a check fails.

To automatically fix issues, in the Action section of the right pane, click the
corresponding fix button.

View the Customization Code

To implement these customizations, on the MATLAB path, create an
sl _customization.m file with the following:

function sl customization(cm)
% SL CUSTOMIZATION - Model Advisor customization demonstration.

% Copyright 2005-2017 The MathWorks, Inc.

[)

i)

register custom checks

cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

[)

i)

register custom factory group

cm.addModelAdvisorTaskFcn(@defineModelAdvisorTasks);

Add Checks and Tasks to the Model Advisor

% register custom tasks.
cm.addModelAdvisorTaskAdvisorFcn(@defineTaskAdvisor);

function defineModelAdvisorTasks
mdladvRoot = ModelAdvisor.Root;

% --- sample factory group

rec = ModelAdvisor.FactoryGroup('com.mathworks.sample.factorygroup');
rec.DisplayName='My Group 2';

rec.Description='Demo Factory Group';
rec.addCheck('com.mathworks.sample.Checkl');
rec.addCheck('com.mathworks.sample.Check2');
rec.addCheck('com.mathworks.sample.Check3"');

mdladvRoot.publish(rec); % publish inside By Group list

function defineModelAdvisorChecks

mdladvRoot = ModelAdvisor.Root;
% --- sample check 1
rec = ModelAdvisor.Check('com.mathworks.sample.Checkl");

rec.Title = 'Check Simulink block font';

rec.TitleTips = 'Example style three callback"';
rec.setCallbackFcn(@SampleStyleThreeCallback, 'None', 'StyleThree');
rec.setInputParametersLayoutGrid([3 2]1);

% set input parameters

inputParaml = ModelAdvisor.InputParameter;
inputParaml.Name = 'Skip font checks.';
inputParaml.Type = 'Bool’;
inputParaml.Value = false;
inputParaml.Description = 'sample tooltip';
inputParaml.setRowSpan([1l 1]);
inputParaml.setColSpan([1l 1]);

inputParam2 = ModelAdvisor.InputParameter;
inputParam2.Name = 'Standard font size';
inputParam2.Value='12";
inputParam2.Type='String";
inputParam2.Description="'sample tooltip';

9-11

O Create Procedural-Based Model Advisor Configurations

inputParam2.setRowSpan([2 2]);

inputParam2.setColSpan([1l 1]);

inputParam3 = ModelAdvisor.InputParameter;
inputParam3.Name='Valid font';

inputParam3.Type='Combobox";

inputParam3.Description="'sample tooltip';
inputParam3.Entries={'Arial', 'Arial Black'};
inputParam3.setRowSpan([2 2]);

inputParam3.setColSpan([2 2]);
rec.setInputParameters({inputParaml, inputParam2,inputParam3});

% set fix operation

myAction = ModelAdvisor.Action;
myAction.setCallbackFcn(@sampleAction(CB);

myAction.Name='Fix block fonts';

myAction.Description='Click the button to update all blocks with specified font';
rec.setAction(myAction);

rec.ListViewVisible = true;

mdladvRoot.publish(rec, 'Demo'); % publish check into Demo group.

% --- sample check 2
rec = ModelAdvisor.Check('com.mathworks.sample.Check2");
rec.Title = 'Check Simulink window screen color';

rec.TitleTips = 'Example style one callback';
rec.setCallbackFcn(@SampleStyleOneCallback, 'None', 'StyleOne');

% set fix operation

myAction2 = ModelAdvisor.Action;

myAction2.setCallbackFcn(@sampleActionCB2);

myAction2.Name='Fix window screen color';

myAction2.Description="'Click the button to change Simulink window screen color to whit
rec.setAction(myAction2);

mdladvRoot.publish(rec, 'Demo'); % publish check into Demo group.

% --- sample check 3
rec = ModelAdvisor.Check('com.mathworks.sample.Check3");
rec.Title = 'Check model optimization settings';

rec.TitleTips = 'Example style two callback';
rec.setCallbackFcn(@SampleStyleTwoCallback, 'None', 'StyleTwo');

% set fix operation

myAction3 = ModelAdvisor.Action;

myAction3.setCallbackFcn(@sampleActionCB3);

myAction3.Name='Fix model optimization settings';

myAction3.Description='Click the button to turn on model optimization settings';
rec.setAction(myAction3);

mdladvRoot.publish(rec, 'Demo'); % publish check into Demo group.

9-12

Add Checks and Tasks to the Model Advisor

% defines Model Advisor tasks
% please refer to Model Advisor API document for more details.

function defineTaskAdvisor
mdladvRoot = ModelAdvisor.Root;

MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSamplel');
MAT1.DisplayName='Example task with input parameter and auto-fix ability';
MAT1.setCheck('com.mathworks.sample.Checkl");

mdladvRoot.register(MATL1);

MAT2 = ModelAdvisor.Task('com.mathworks.sample.TaskSample2');
MAT2.DisplayName='Example task 2';
MAT2.setCheck('com.mathworks.sample.Check2"');
mdladvRoot.register(MAT2);

MAT3 = ModelAdvisor.Task('com.mathworks.sample.TaskSample3');
MAT3.DisplayName='Example task 3';
MAT3.setCheck('com.mathworks.sample.Check3");
mdladvRoot.register(MAT3);

MAG = ModelAdvisor.Group('com.mathworks.sample.GroupSample');
MAG.DisplayName='My Group';

MAG.addTask(MATL1);

MAG.addTask (MAT2) ;

MAG.addTask(MAT3);

mdladvRoot.publish(MAG); % publish under Root

% Define procedures
MAP = ModelAdvisor.Procedure('com.mathworks.sample.ProcedureSample');
MAP.DisplayName='My Procedure’;

MAP_sub = ModelAdvisor.Procedure('com.mathworks.sample.sub ProcedureSample');
MAP_sub.DisplayName='My sub Procedure';

% Define tasks

MAT4 = ModelAdvisor.Task('com.mathworks.sample.TaskSampled');
MAT4.DisplayName='Check Simulink block font"';
MAT4.setCheck('com.mathworks.sample.Checkl");
mdladvRoot.register(MAT4);

9-13

O Create Procedural-Based Model Advisor Configurations

9-14

MAT5 = ModelAdvisor.Task('com.mathworks.sample.TaskSample5');
MAT5.DisplayName='Check Simulink window screen color';
MAT5.setCheck('com.mathworks.sample.Check2"');
mdladvRoot.register(MAT5);

MAT6 = ModelAdvisor.Task('com.mathworks.sample.TaskSample6');
MAT6.DisplayName='Check model optimization settings';
MAT6.setCheck('com.mathworks.sample.Check3");
mdladvRoot.register(MAT6);

Add tasks to procedures:

Add Task4 to MAP
AP.addTask(MAT4);

Now Add Task5 and Task6 to MAP_sub
MAP_sub.addTask(MAT5);
MAP_sub.addTask(MAT6) ;

% Include the Sub-Procedure in the Procedure
MAP.addProcedure (MAP_sub);

® = o° o°

mdladvRoot.register(MAP_sub); % publish under Root
mdladvRoot.publish(MAP); % publish under Root

ample StyleThree callback function,

lease refer to Model Advisor API document for more details.

function [ResultDescription, ResultDetails] = SampleStyleThreeCallback(system)
ResultDescription ={};

ResultDetails ={};

T n

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);

mdladvObj.setCheckResultStatus(true);

needEnableAction = false;

% get input parameters

inputParams = mdladvObj.getInputParameters;

skipFontCheck = inputParams{1l}.Value;

regularFontSize inputParams{2}.Value;

regularFontName inputParams{3}.Value;

if skipFontCheck
ResultDescription{end+1}
ResultDetails{end+1}
return

ModelAdvisor.Paragraph('Skipped."');
{};

end

Add Checks and Tasks to the Model Advisor

regularFontSize = str2double(regularFontSize);

if regularFontSize<l || regularFontSize>=99
mdladvObj.setCheckResultStatus(false);
ResultDescription{end+1} ModelAdvisor.Paragraph('Invalid font size. Please enter
ResultDetails{end+1} {};

end

% find all blocks inside current system
allBlks = find system(system);

% block diagram doesn't have font property
% get blocks inside current system that have font property
allBlks = setdiff(allBlks, {system});

% find regular font name blocks
regularBlks = find system(allBlks, 'FontName', regularFontName);

% look for different font blocks in the system
searchResult = setdiff(allBlks, regularBlks);
if ~isempty(searchResult)
ResultDescription{end+1} = ModelAdvisor.Paragraph(['It is recommended to use same -
'The following blocks use a font other than ' regularFontName ': ']);
ResultDetails{end+1} = searchResult;
mdladvObj.setCheckResultStatus(false);
myLVParam = ModelAdvisor.ListViewParameter;
myLVParam.Name = 'Invalid font blocks'; % the name appeared at pull down filter
myLVParam.Data = get param(searchResult, 'object')";
myLVParam.Attributes = {'FontName'}; % name is default property
mdladvObj.setListViewParameters ({myLVParam});
needEnableAction = true;
else
ResultDescription{end+1}
ResultDetails{end+1}

ModelAdvisor.Paragraph('All block font names are identi

{};

end

% find regular font size blocks

regularBlks = find system(allBlks, 'FontSize',regularFontSize);

% look for different font size blocks in the system

searchResult = setdiff(allBlks, regularBlks);

if ~isempty(searchResult)
ResultDescription{end+1} = ModelAdvisor.Paragraph(['It is recommended to use same -

'The following blocks use a font size other than ' num2str(regularFontSize) ':

ResultDetails{end+1} = searchResult;
mdladvObj.setCheckResultStatus(false);

9-15

O Create Procedural-Based Model Advisor Configurations

myLVParam = ModelAdvisor.ListViewParameter;

myLVParam.Name = 'Invalid font size blocks'; % the name appeared at pull down filte

myLVParam.Data = get param(searchResult, 'object')’;

myLVParam.Attributes = {'FontSize'}; % name is default property

mdladvObj.setListViewParameters({mdladvObj.getListViewParameters{:}, myLVParam});

needEnableAction = true;
else

ResultDescription{end+1}

ResultDetails{end+1}

ModelAdvisor.Paragraph('All block font sizes are identi

{};

end

mdladvObj.setActionEnable(needEnableAction);
mdladvObj.setCheckErrorSeverity(1);

ample StyleOne callback function,

lease refer to Model Advisor API document for more details.

function result = SampleStyleOneCallback(system)

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system); % get object

T n

if strcmp(get param(bdroot(system), 'ScreenColor'), 'white")
result = ModelAdvisor.Text('Passed',{'pass'});
mdladvObj.setCheckResultStatus(true); % set to pass
mdladvObj.setActionEnable(false);

else
result = ModelAdvisor.Text('It is recommended to select a Simulink window screen cq
mdladvObj.setCheckResultStatus(false); % set to fail
mdladvObj.setActionEnable(true);
mdladvObj.setCheckErrorSeverity(1l);

end

ample StyleTwo callback function,

lease refer to Model Advisor API document for more details.

function [ResultDescription, ResultDetails] = SampleStyleTwoCallback(system)
ResultDescription ={};

ResultDetails ={};

T n

model = bdroot(system);
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system); % get object
mdladvObj.setCheckResultStatus(true); % init result status to pass

9-16

Add Checks and Tasks to the Model Advisor

% Check Simulation optimization setting
ResultDescription{end+1} = ModelAdvisor.Paragraph('Check Simulation optimization setti
if strcmp(get param(model, 'BlockReduction'), 'off")
ResultDetails{end+1} = {ModelAdvisor.Text('It is recommended to turn on Block
mdladvObj.setCheckResultStatus(false); % set to fail
mdladvObj.setActionEnable(true);
else
ResultDetails{end+1} = {ModelAdvisor.Text('Passed',{'pass'})};
end

% Check code generation optimization setting

ResultDescription{end+1} = ModelAdvisor.Paragraph('Check code generation optimization

ResultDetails{end+1} = {};

if strcmp(get param(model, 'LocalBlockOutputs'), 'off")
ResultDetails{end}{end+1} = ModelAdvisor.Text('It is recommended to turn on En:
ResultDetails{end}{end+1} = ModelAdvisor.LineBreak;
mdladvObj.setCheckResultStatus(false); % set to fail
mdladvObj.setActionEnable(true);

end

if strcmp(get param(model, 'BufferReuse'), 'off")
ResultDetails{end}{end+1} = ModelAdvisor.Text('It is recommended to turn on Rel
mdladvObj.setCheckResultStatus(false); % set to fail
mdladvObj.setActionEnable(true);

end

if isempty(ResultDetails{end})
ResultDetails{end}{end+1} = ModelAdvisor.Text('Passed',{'pass'});

end

% Sample action callback function,

% please refer to Model Advisor API document for more details.

function result = sampleActionCB(taskobj)
mdladvObj = taskobj.MAQObj;
system = getfullname(mdladvObj.System);

% get input parameters

inputParams = mdladvObj.getInputParameters;
regularFontSize inputParams{2}.Value;
regularFontName inputParams{3}.Value;

% find all blocks inside current system
allBlks = find system(system);

9-17

O Create Procedural-Based Model Advisor Configurations

% block diagram itself doesn't have font property
% get blocks inside current system that have font property
allBlks = setdiff(allBlks, {system});

% find regular font name blocks
regularBlks = find system(allBlks, 'FontName', regularFontName);
% look for different font blocks in the system
fixBlks = setdiff(allBlks, regularBlks);
% fix them one by one
for i=1:length(fixBlks)
set param(fixBlks{i}, 'FontName', regularFontName);
end
% save result
resultTextl = ModelAdvisor.Text([num2str(length(fixBlks)), ' blocks has been updated w:

% find regular font size blocks
regularBlks = find system(allBlks, 'FontSize',str2double(regularFontSize));
% look for different font size blocks in the system
fixBlks = setdiff(allBlks, regularBlks);
% fix them one by one
for i=1:length(fixBlks)
set param(fixBlks{i}, 'FontSize', regularFontSize);
end
% save result
resultText2 = ModelAdvisor.Text([num2str(length(fixBlks)), ' blocks has been updated w:
result = ModelAdvisor.Paragraph;
result.addItem([resultTextl ModelAdvisor.LineBreak resultText2]);
mdladvObj.setActionEnable(false);

ample action callback function for Check Simulink window screen color

lease refer to Model Advisor API document for more details.

function result = sampleActionCB2(taskobj)

mdladvObj = taskobj.MAQObj;

system = mdladvObj.System;

set param(bdroot(system), 'ScreenColor', 'white');

result = ModelAdvisor.Text('Simulink window screen color has been updated to white colc
mdladvObj.setActionEnable(false);

T n

ample action callback function for model optimization settings
lease refer to Model Advisor API document for more details.

o°
T On

9-18

Add Checks and Tasks to the Model Advisor

o°

function result = sampleActionCB3(taskobj)
mdladvObj = taskobj.MAQObj;

model = bdroot(mdladvObj.System);

set param(model, 'BlockReduction', 'on');
set param(model, 'LocalBlockOutputs', 'on');
set param(model, 'BufferReuse','on');

result = ModelAdvisor.Text('Model optimization options "Block reduction", "Enable loca
mdladvObj.setActionEnable(false);

9-19

Deploy Custom Configurations

10 Deploy Custom Configurations

Overview of Deploying Custom Configurations

10-2

About Deploying Custom Configurations

When you create a custom configuration, often you deploy the custom configuration to
your development group. Deploying the custom configuration allows your development
group to review models using the same checks.

After you create a custom configuration, you can use it in the Model Advisor, or deploy the
configuration to your users. You can deploy custom configurations whether you created
the configuration using the Model Advisor Configuration Editor or within the
customization file.

Deploying Custom Configurations Workflow

When you deploy custom configurations, you:

Optionally author custom checks, as described in “Create Model Advisor Checks”.

Organize checks and folders to create custom configurations, as described in “Create
Custom Configurations” on page 8-2.

3 Deploy the custom configuration to your users, as described in “How to Deploy
Custom Configurations” on page 10-3.

How to Deploy Custom Configurations

How to Deploy Custom Configurations

To deploy a custom configuration:

1 Determine which files to distribute. You might need to distribute more than one file.

If You... Using the... Distribute...
Created custom checks |Customization file * sl customization.
m

* Files containing check
and action callback
functions (if separate)

Organized checks and Model Advisor Configuration MAT file
folders Configuration Editor
Customization file sl customization.m

2 Distribute the files and tell the user to include these files on the MATLAB path.
3 Instruct the user to load the custom configuration.

See Also

Related Examples
. “Manually Load and Set the Default Configuration” on page 10-4

10-3

10 Deploy Custom Configurations

Manually Load and Set the Default Configuration

When you use the Model Advisor, you can load any configuration. Once you load a
configuration, you can set it so that the Model Advisor use that configuration every time
you open the Model Advisor.

1 In the Modeling tab, select Model Advisor to open the Model Advisor.

2 Select Settings > Load Configuration.

3 In the Open dialog box, navigate to and select the configuration file that you want to
edit.

4 Click Open.

Simulink reloads the Model Advisor using the new configuration.

5 Optionally, when the Model Advisor opens, set the current configuration as the
default by selecting Settings > Set Current Configuration as Default.

See Also

Related Examples

. “Update the Environment to Include Your sl customization File” on page 8-18

More About

. “Organize Checks and Folders Using the Model Advisor Configuration Editor” on
page 8-5

10-4

Model Slicer

« “Highlight Functional Dependencies” on page 11-2

« “Highlight Dependencies for Multiple Instance Reference Models” on page 11-9
* “Refine Highlighted Model” on page 11-13

* “Refine Dead Logic for Dependency Analysis” on page 11-26

* “Create a Simplified Standalone Model” on page 11-33

* “Highlight Active Time Intervals by Using Activity-Based Time Slicing” on page 11-34
* “Simplify a Standalone Model by Inlining Content” on page 11-43

* “Workflow for Dependency Analysis” on page 11-47

* “Configure Model Highlight and Sliced Models” on page 11-50

* “Model Slicer Considerations and Limitations” on page 11-54

* “Using Model Slicer with Stateflow” on page 11-63

* “Isolating Dependencies of an Actuator Subsystem” on page 11-65

+ “Isolate Model Components for Functional Testing” on page 11-70

* “Refine Highlighted Model by Using Existing .slslicex or Dead Logic Results”
on page 11-80
» “Simplification of Variant Systems” on page 11-83

y

* “Programmatically Resolve Unexpected Behavior in a Model with Model Slicer’
on page 11-85

* “Refine Highlighted Model Slice by Using Model Slicer Data Inspector”
on page 11-99

* “Debug Slice Simulation by Using Fast Restart Mode” on page 11-106
+ “Isolate Referenced Model for Functional Testing” on page 11-115
* “Analyze the Dead Logic” on page 11-121

+ “Investigate Highlighted Model Slice by Using Model Slicer Data Inspector”
on page 11-127

1 1 Model Slicer

Highlight Functional Dependencies

11-2

Large models often contain many levels of hierarchy, complicated signals, and complex
mode logic. You can use Model Slicer to understand which parts of your model are
significant for a particular behavior. This example shows how to use Model Slicer to
explore the behavior of the sldvSliceClimateControlExample model. You first select
an area of interest, and then highlight the related blocks in the model. In this example,
you trace the dependency paths upstream of Outl to highlight which portions of the
model affect its behavior.

Open the model and highlight the functional dependencies of a signal in the system:
1 Add the example folder to the search path.

addpath(fullfile(docroot, 'toolbox"', 'simulink', 'examples'))
2 Openthe sldvSliceClimateControlExample model.

sldvSliceClimateControlExample
3 Select Analysis > Model Slicer to open the Model Slice Manager.
When you open the Model Slice Manager, Model Slicer compiles the model. You then
configure the model slice properties.
In the Model Slice Manager, click the arrow to expand the Slice configuration list.
5 Set the slice properties:

* Name: QutlSlice

Color: ! (magenta)
* Signal Propagation: upstream
Model Slicer can also highlight the constructs downstream of or bidirectionally from

a block in your model, depending on which direction you want to trace the signal
propagation.

6 Add Outl as a starting point. In the model, right-click Outl and select Model Slicer

> Add as Starting Point.

Highlight Functional Dependencies

Muodel Slice Manager: sldvSliceClimateControlExample X
 Slice configuration list 3; @ ®
Name Slice % Bl

s OutlSlice 57% %

Name: |Out1Slice | N

Description:

Signal propagation: #= upstream -

Starting Points [clear all
= L outt

¥ Simulation time window

» Refine Dead Logic

Export to Web |Generate Slice

Slicer Active

The Model Slicer now highlights the upstream constructs that affect Out1.

11-3

11 Model Slicer

If you create two slice configurations, you can highlight the intersecting portions of their
highlights. Create a new slice configuration and view the intersecting portions of the slice
configuration you created above and the new slice configuration:

1 Create a new slice configuration with the following properties

* Name: Out3Slice

Color: - (red)
* Signal Propagation: upstream
* Starting point: Qut3

11-4

Highlight Functional Dependencies

2 In the Model Slice Manager, select both the Qut1Slice slice configuration and the
Out3Slice slice configuration.

11-5

1 1 Model Slicer

Muodel Slice Manager: sldvSliceClimateControlExample X
 Slice configuration list 3; @ ®
Name Slice % Bl

s OutlSlice 57%

U Out3Slice 34%

Name: | Out3Slice | .

Description:

Signal propagation: #= upstream &

Starting Points [clear all
5 L outs

¥ Simulation time window
» Refine Dead Logic

Export to Web |Generate Slice

Slicer Active

Model Slicer highlights portions of the model as follows:

* The portions of the model that are exclusively upstream of Outl are highlighted in
cyan.

* The portions of the model that are exclusively upstream of Out3 are highlighted in
red.

11-6

Highlight Functional Dependencies

* The portions of the model that are upstream of both Outl and Out3 are highlighted in

black.
on_off on_off
on_off
Write off_off_signal
Tzat
= = g Hﬂ_iigeratbnOut%
delsy
= Wite1 Time delay sec 8 Tmeas an
Tset
@—* DeltaT fan DeltaT_fan Refrigeration
DT_fan plset CoolDn e
- Write2 DSM fantemp pTmeas HestOn
ModeC onirol *
b=ttaTHeatCoo | eltaTHeatCod n
DTHeatCool Tset HeaterAzt 2
Write3 DSM pump temp T TR
Tmess -
Tmeas PumpAct *
PumpDelay PumpDelay ot
PumpDelay Heater

Writed DSM pump templ

After you highlight a portion of your model, you can then refine the highlighted model to
an area of interest. Or, you can create a simplified standalone model containing only the

highlighted portion of your model.

To view the details of the highlighted model in web view, click Export to Web. The web
view HTML file is stored in <current folder>\<model name>\webview.html.

11-7

1 1 Model Slicer

11-8

sldv SliceClimateControlExample || View All |

2 [al sidvSliceClimateControlExample »

o) Q_*L”I | on_cf |
! on_oft =

Tite: oF_off_signal

2 delay dalay
e Wikital Time delay sec
DehtaT_fan I | DettaT_fan l
e Witz DM fan temp

taTHeatCol taTHeatCo
DTHeatCoal E_ipump e
O] =]
PumpDelay e —

Wit DSM purnip tamp

»

sldvSliceClimateControlExample

Model Slicer highlighted view

Name Qut3Slice Out1Slice Intersection
Description Intersection for two slice configurations.
Color ——

Signal propagation Upstream Upstream
Starting Points + JOut3 - _/Quil

See Also

More About

. “Refine Highlighted Model” on page 11-13

. “Create a Simplified Standalone Model” on page 11-33

. “Model Slicer Considerations and Limitations” on page 11-54

Highlight Dependencies for Multiple Instance Reference Models

Highlight Dependencies for Multiple Instance Reference
Models

sldemo_mdlref_counter = sldemo_mdlref_counter
upper uppar

To highlight the functional dependencies in a Simulink model with multiple instances of a
referenced model, use Model Slicer. You can use Model Slicer on a Simulink model that
contains single or multiple references to a same model in normal simulation mode.

This example shows the behaviour of Model Slicer when there are multiple instances of
the referenced model. The slslicerdemo multi instance model consists of

sldemo _mdlref counter referenced two times with different inputs during the course
of the signal flow transition.

1. Open the model slslicerdemo_multi_instance.slx.

open_system('slslicerdemo multi instance');

Highlight Dependencies for Multiple Reference Models

T
-
e

Gy

+H HH +HH
. i . i
+ll--i-0-ll--i+ #{ input output W JML ¥ input output mﬁ
Outh COutB
PG2 PG4
koweer kower
CounterA CounterB

Caopyright 2018 The MathWorks, Inc.

2. On the Apps tab, under Model Verification, Validation, and Test gallery, click
Model Slicer.

3. In the Model Slicer window, click Add all outports. This sets OQutA and OutB as
starting points.

4. Ensure that the Signal Propagation is set to upstream.

5. In the Simulation time window section, click Run simulation.

11-9

1 1 Model Slicer

Madel Slice Manager: slslicerdemo_multi_instance *

b Slice configuration list é’ﬁ @ @

MName: | untitled | _I

Description:

Signal propagation: 4= |upstream -

Starting Points [clear all
B LF guta
LF outB

* Simulation time window

Run simulation 0]

[

Use existing simulation data

» Refine Dead Logic

Export to Web | | Generate Slice

Slicer Active

6. In the simulation time window, click OK. The model simulation starts.

11-10

Highlight Dependencies for Multiple Instance Reference Models

Record simulation time window: slslicerdemo_multi_ins.,

Please specify stop time of the simulation time window and
press OK to start simulation.

The model is in editable highlight mode now. Consider
turning on Fast Restart for simulation based workflows.
Click here to enable Fast Restart.

Stop time: |10 |
[] Log inputs and outputs of the starting points

Save As IE‘I.SI5Iicerdemn_multi_instance1.5I5Iicex| Change

cancl

7. The simulated model highlights the upstream dependency of the outports OutA and
OutB.

11-11

11 Model Slicer

11-12

sldemo_mdiref_counter N
upper

sldemo_mdlref_counter

You can notice that the referenced model in both the instances shows different signal
propagations highlighted by Simulink Slicer for which the signal travels.

8. To generate the slice, click Generate Slice.

More About

* “Highlight Functional Dependencies” on page 11-2
* “Model Slicer Considerations and Limitations” on page 11-54

Refine Highlighted Model

Refine Highlighted Model

After you highlight a model using Model Slicer, you can refine the dependency paths in
the highlighted portion of the model. Using Model Slicer, you can refine a highlighted
model by including only those blocks used in a portion of a simulation time window, or by
excluding blocks or certain inputs of switch blocks. By refining the highlighted portion of
your model, you can include only the relevant parts of your model.

In this section...

“Define a Simulation Time Window” on page 11-13
“Exclude Blocks” on page 11-19

“Exclude Inputs of a Switch Block” on page 11-22

Define a Simulation Time Window

You can refine a highlighted model to include only those blocks used in a portion of a
simulation time window. Defining the simulation time window holds some switch blocks
constant, and as a result removes inactive inputs.

1 Add the example folder to the search path.

addpath(fullfile(docroot, 'toolbox"', 'simulink', 'examples'))
2 Openthe sldvSliceClimateControlExample model.

sldvSliceClimateControlExample

3 On the Apps tab, under Model Verification, Validation, and Test gallery, click
Model Slicer.

When you open the Model Slice Manager, Model Slicer compiles the model. You then
configure the model slice properties.

In the Model Slice Manager, click the arrow to expand the Slice configuration list.
5 Set the slice properties:

 Name: OutlSimulation

Color: J (cyan)
* Signal propagation: upstream

11-13

1 1 Model Slicer

Model Slice Manager: sldvSliceClimateControlExample X

¢
 Slice configuration list 3; @ U
Name Slice % I:II:I':,

Out1Simulation
®
Name: |0ut15imu|at|'on | J

Description:

Signal propagation: #= upstream &

Starting Points [Add all outports
Right-click model items fo select.

¥ Simulation time window
» Refine Dead Logic

Export to Web Generate Slice

Slicer Active

6 In the top level of the model, select the Outl block as the slice starting point. Right-
click the Out1l block and select Model Slicer > Add as Starting Point.

The model is highlighted.
In the Model Slice Manager, select Simulation time window.
To specify the stop time of the simulation time window, click the run simulation

button in the Model Slice Manager.

11-14

Refine Highlighted Model

9 Set the Stop time to 10.
10 Click OK to start the simulation.

EL Meodel Slice Manager: sldvSliceClimateControlExample x

* Slice configuration list

Name Slice %
Out1Simulation 57%
E Record simulation time window: sldvSliceClimateContro... X
Name: OutlSimulation
—I Please specify stop time of the simulation time window and
Description:

press OK to start simulation. The model is in editable
highlight mode now.

Signal propagation: 4= |upstream ¥ Stop time: |10.0 l

Starting Points [clear al

[Log inputs and outputs of the starting points
2 Doyt

save As [sldvsliceClimateControlExample.sislice| | Change

[ox][concel

¥ Simulation time window
Run simulation

Use existing simulation data
» Refine Dead Logic

Export to Web Generate Slice
Slicer Active

The path is restricted to only those blocks that are active until the stop time that you
entered.

11-15

11 Model Slicer

11 To highlight the model for a defined simulation time window, set the Stop time to 5.
Click Highlight.

11-16

Refine Highlighted Model

Model Slice Manager: sldvSliceClimateControlExample

¥ Slice configuration list 3; @

Name Slice %

+ DQutlSimulation 12%

B % & O]

MName: |Dut15imulation |

i

Description:

Signal propagation: = |upstream -

Starting Points [clear all
B L out1

¥ Simulation time window (Enabled)
Simulation data:

sldvSliceClimateControlExample4.slslicex

0 to 10 seconds

Time window
Start |0 | stop |5 || Highlight |
Actual simulation time: 0 to 10 seconds Inspect Signals

b Refine Dead Logic

Export to Web| |General:e Slit:e|
: . 11-17
Slicer Active

11 Model Slicer

12 To see how this constraint affects the highlighted portion of the model, open the
Refrigeration subsystem.

The highlighted portion of the model includes only the input ports of switches that
are active in the simulation time window that you specified.

After you refine your highlighted model to include only those blocks used in a portion of a
simulation time window, you can then “Create a Simplified Standalone Model” on page
11-33 incorporating the highlighted portion of your model.

11-18

Refine Highlighted Model

Exclude Blocks

You can refine a highlighted model to exclude blocks from the analysis. Excluding a block
halts the propagation of dependencies, so that signals and model items beyond the
excluded block in the analysis direction are ignored.

Exclusion points are useful for viewing a simplified set of model dependencies. For
example, control feedback paths create wide dependencies and extensive model
highlighting. You can use an exclusion point to restrict the analysis, particularly if your
model has feedback paths.

Note Simplified standalone model creation is not supported for highlighted models with
exclusion points.

In the Model Slice Manager, click the arrow to expand the Slice configuration list.
To add a new slice configuration, click the add new button ‘i’

3 Set the slice properties:

* Name: OutlExcluded

) Color: ! (red)

* Signal Propagation: upstream

4 In the top level of the model, select the Outl block as the slice starting point. Right-
click the Out1l block and select Model Slicer > Add as Starting Point.

11-19

1 1 Model Slicer

Muodel Slice Manager: sldvSliceClimateControlExample X

o
 Slice configuration list 3; @ U
Name Slice % ,{I':,

O Out1Simulation 12% ®

s OutlExcluded 57%

Name: |0ut1Echuded | 1

Description:

Signal propagation: #= upstream &

Starting Points Iclear al
= L outt

» Simulation time window

» Refine Dead Logic

Export to Web | Generate Slice

Slicer Active

The model is highlighted.

5 To open the subsystem, double-click Refrigeration.
Right-click the Fan switch block, and then select Model Slicer > Add as Exclusion
Point.

The blocks that are exclusively upstream of the Fan switch block are no longer
highlighted. The DT Fan Data Store Read block is no longer highlighted.

11-20

Refine Highlighted Model

To see how this constraint affects the highlighted portion of the model, view the
parent system.

The DSM fan temp Data Store Memory block and the Write2 Data Store Write
block are no longer highlighted, because the DT Fan Data Store Read in the
Refrigeration subsystem no longer accesses them.

11-21

1 1 Model Slicer

M on_off on_off

on_off
Write off_off_signal
Test
= = i HeiigeratnOut%
delay P
’ Wirite1 Time delay sec Tmeas s
Tset
3 DeltaT_fan DeltaT_fan Refrigeration
OT fan Teat Coolln
S Wirite2 DS M fan temp Tmeas HestOn
ModeConirol
eftsTHeatCod] ettaTHeatCog n
DTHeatCool Tt HesterAct 2
Write3 DSM pump temp .—
Sor
Tmess
—_— Tmeas Pumpact 3
B PumpDelay PumpDelay outa
PumpDelay -

Writed DSM pumnp temp Heater

Exclude Inputs of a Switch Block

For complex signal routing, you can constrain the dependency analysis paths to a subset
of the available paths through switch blocks. Constraints appear in the Model Slice
Manager.

Note Simplified standalone model creation is not supported for highlighted models with
constrained switch blocks.

1 Double-click Refrigeration to open the subsystem.
2 Constrain the On switch block:

* Right-click the switch block and select Model Slicer > Add Constraint.
* In the Constraints dialog box, select Port 3.
» Click OK.

11-22

Refine Highlighted Model

Model Slice Manager: sldvSliceClimateControlExample it
'_P
 Slice configuration list 3; @ O
Name Slice % ,{I':,
O Out1Simulation 12% ®
s OutlExcluded 34%
Name: |0ut1 Excluded | .

Description:

-

Signal propagation: #= upstream

Starting Points [clear all

B T outt
Exclusion Peoints [clear all
B LFFan

Constraints [clear all
B O on: Port 3

» Simulation time window
» Refine Dead Logic

Export to Web| Generate Slice

Slicer Active

The path is restricted to the Constant1l port on the switch. The blocks that are
upstream of Port 1 and Port 2 of the constrained switch are no longer highlighted.

Only the blocks upstream of Port 3 are highlighted.

11-23

11 Model Slicer

3 To see how this constraint affects the highlighted portion of the model, view the
parent system.

11-24

See Also

See Also

More About

. “Create a Simplified Standalone Model” on page 11-33
. “Model Slicer Considerations and Limitations” on page 11-54

11-25

1 1 Model Slicer

Refine Dead Logic for Dependency Analysis

11-26

To refine the dead logic in your model for dependency analysis, use the Model Slicer. To
provide an accurate slice, Model Slicer leverages Simulink Design Verifier dead logic
analysis to remove the unreachable paths in the model. Model Slicer identifies the dead
logic and refines the model slice for dependency analysis. For more information on Dead
logic, see “Dead Logic Detection” (Simulink Design Verifier).

Analyze the Dead Logic

This example shows how to refine the model for dead logic. The
sldvSlicerdemo dead logic model consists of dead logic paths that you refine for
dependency analysis.

1. Open the sldvSlicerdemo dead logic model, and then select Analysis > Model
Slicer.

open_system('sldvSlicerdemo dead logic');

Refine Dead Logic for Dependency Analysis

Simulink Design Verifier
Cruise Control Test Generation

L1 F # enable
enable
[2 } P brake throt = 1 }
brake throt
1 | st
sel [0 100]
s) ——{ewees
speed Actual s
G >inc target|———»((2)
inc target
! 4 " | dec
dec
Controller

This example shows how to refine the model for dead logic. The model consists of a Controller
subsystem that has a set value equal to 1. Dead logic refinement analyszis identifies the dead logic

in the model. The inactive elements are removed from the slice.

Toggle Constraint

Copyright 2006-2018 The MathWorks, Inc.

Open the Controller subsystem and add the outport throt as the starting point.

11-27

11 Model Slicer

The Model Slicer highlights the upstream dependency of the throt outport.

2. In the Model Slice Manager, select Refine Dead Logic.
3. Click Get Dead Logic Data.

11-28

Refine Dead Logic for Dependency Analysis

Madel Slice Manager: sldvSlicerdernc_dead_legic

b Slice configuration list

oh 8@

X

Name: | untitled

"]

Description:

Sigmal propagation: #= |upstream 57

Starting Points [clear all
B throt

b Simulation time window
¥ Refine Dead Logic
Get Dead Logic Data

Export to Web

Slicer Active

Generate Slice

4. Specify the Analysis time and run the analysis. You can import existing dead logic
results from the sldvData file or load existing . slslicex data for analysis. For more
information, see “Refine Highlighted Model by Using Existing .slslicex or Dead Logic

Results” on page 11-80.

11-29

1 1 Model Slicer

11-30

Refine Dead Logic

Generate results

Run analysis

Import SLDV data

Load results

>
Analysis time: |300 Ir@|
Browss for SLDV data file [E|
Save As |‘\5Idv5Iicerdemn_dead_lagic.ﬁlslicex | | Change |
Browse for existing dead logic results _'E_IT_l
| Cancel |

See Also

As the set input is equal to true, the False input to switch is removed for dependency

analysis. Similarly, the output of block OR is always true and removed from the model
slice.

See Also

More About
. “Refine Highlighted Model” on page 11-13

11-31

1 1 Model Slicer

. “Refine Highlighted Model by Using Existing .slslicex or Dead Logic Results” on
page 11-80

11-32

Create a Simplified Standalone Model

Create a Simplified Standalone Model

You can simplify simulation, debugging, and formal analysis of large and complex models
by focusing on areas of interest in your model. After highlighting a portion of your model
using Model Slicer, you can generate a simplified standalone model incorporating the
highlighted portion of your original model. Apply changes to the simplified standalone
model based on simulation, debugging, and formal analysis, and then apply these changes
back to the original model.

Note Simplified standalone model creation is not supported for highlighted models with
exclusion points or constrained switch blocks. If you want to view the effects of exclusion
points or constrained switch blocks on a simplified standalone model, first create the

simplified standalone model, and then add exclusion points or constrained switch blocks.

1 Highlight a portion of your model using Model Slicer.

See “Highlight Functional Dependencies” on page 11-2 and “Refine Highlighted
Model” on page 11-13.
In the Model Slice Manager, click Generate slice.
3 Inthe Select File to Write dialog box, select the save location and enter a model
name.
The simplified standalone model contains the highlighted model items.
4 To remove highlighting from the model, close the Model Slice Manager.
When generating a simplified standalone model from a model highlight, you might need to
refine the highlighted model before the simplified standalone model can compile. See the

“Model Slicer Considerations and Limitations” on page 11-54 for compilation
considerations.

See Also

More About
. “Configure Model Highlight and Sliced Models” on page 11-50

11-33

1 1 Model Slicer

Highlight Active Time Intervals by Using Activity-Based
Time Slicing

11-34

Stateflow states and transitions can be active, inactive, or sleeping during model
simulation. You can use Model Slicer to constrain model highlighting to only highlight the
time intervals in which certain Stateflow “States” (Stateflow) and “Transitions”
(Stateflow) are active. Therefore, you are able to refine your area of interest to only those
portions of your model that affect model simulation during the operation of the selected
states and transitions. You can also constrain model highlighting to the intersection of the
time intervals of two or more states or transitions.

In this section...

“Highlighting the Active Time Intervals of a Stateflow State or Transition” on page 11-
34

“Activity-Based Time Slicing Limitations and Considerations” on page 11-42
“Stateflow State and Transition Activity” on page 11-42

Highlighting the Active Time Intervals of a Stateflow State or
Transition

The slslicer fuelsys activity slicing model contains a fault-tolerant fuel
control system. In this tutorial, you use activity-based time slicing to refine a model
highlight to only those time intervals in which certain states and transitions are active.
You must be familiar with how to “Highlight Functional Dependencies” on page 11-2 by
using Model Slicer.

Create a Dynamic Slice Highlight for an Area of Interest
1 Add the example folder to the search path.

addpath(fullfile(docroot, 'toolbox"', 'simulink', 'examples'))
2 Openthe slslicer fuelsys activity slicing model.

open _system('slslicer fuelsys activity slicing')

3 Open Model Slicer and add the control logic Stateflow chart in the fuel rate
controller subsystem as a Model Slicer starting point.

4 Highlight the portions of the model that are upstream of the control logic
Stateflow chart.

Highlight Active Time Intervals by Using Activity-Based Time Slicing

5 Simulate the model within a restricted simulation time window (maximum 20
seconds) to highlight only the areas of the model upstream of the starting point and
active during the time window of interest.
— P Sensor correction and
throtte Fault Redundancy
» Airflow calculation Fuel Calculation
| b= SENE0ME
- Comected = SENE_IN
Failuras est. air flow P=est. air flow
C2)| 1 |
- Failures
engine
speed
fesdback comection = feedback comection
mode
II(“"—"‘\I fusd rate —:." 1
G~ - =
EGD fail_siate = Failures rate
()
dee X
|_meode = mode
i
MAP I'\-..—.-v"‘l

controd logic

fuel rate controller

Constrain the Model Highlight to the Active Time Interval of a Stateflow State

1

2

On the Apps tab, under Model Verification, Validation, and Test gallery, click
Model Slicer.

Navigate to the control logic Stateflow chart in the fuel rate controller
subsystem.

open_system('slslicer fuelsys activity slicing/fuel rate controller/control logic')

To constrain the model highlight to only those time intervals in which the

Fueling_ Mode > Running > Low_Emissions > Warmup state is active, right-click
the Warmup state and select Model Slicer > Constrain to active time intervals
for “Warmup”.

11-35

11

Model Slicer

11-36

e

fail
entry: fail_state[02] = 1;

prass > max_press | press < min_prass]
[FailINC

|[Ego = max_sago] |

¥
fail
entry: fail_state[PRESS] = 1

normal
enlry: fail_stata[PRESS] = [

[Ego > max_ega)/
Fail INC

[press = min_prass & press < max_prass)

rol> max_throt | throt = min_throt}/
Fail INC

I
eniry: fail_state]THROT] = 0; }

:

i)
fail
eniry: fail_stale[THROT] = 1;

[thrat = min_throt & throt = max_throt]
{ Fail. DEC

|anlw: tail_state[SPEED] = 0 ‘ entry: fall_state{SPEED] = 1

H
[spaad==0 & press = zera_thresh) i
H
i
Lf |
normal fail ' i
:
[speed > 0]/ :

H

i

i (Fuel_Disabled \
i | speed = max_spaed | anlry: fuel_mode = DISABLED '
| (Famn ® 3 i
: LEce (H) Overspeed .
| (Low_Emissions . ™ (Rich_Mixture A :
i entry: fual_mode = LOW H) eniry: fuel_moda = RICH :
| .
: s
i [in(Fail.One)] [in{Spead_normal) & ... i
! Marmal [Yirn Fail_ ALt} spaad = (max_spaad - hys)] E
! H
! [in{Fail Nena)] \(Fail Mult :
! jenter(Failmu)y | () Oin{Pat FuS :
! 2~ lin{Fail. One}} :
! el) | ——=c={Shutdown :
i (02 normal)] Model Slicer * Constrain to active time intervals for "Warmup” '
| Explore E— £ & .‘I

Properties...

Help

Highlight Active Time Intervals by Using Activity-Based Time Slicing

Model Slicer is updated to highlight only those portions of the model that are active
during the time intervals in which the warmup state is active.

fo2 ‘Pressure "
E fail H
. entry: fail_state[02] = 1; . i
3 press > Max_press | prass < min_prass) H
¢ [warmup JFail.INC :
| |entry: fail_state[0Z] = [Ego < max_ega| / .) i
' - narmal fail i
i antry: fall_stale[PRESS]) =0 entry: fail_state[FRESS] = 1 [
. [t =02 _t_thresh] :
i [Ego = max_aga)! :
. normal |press = min_press & press < max_press)] / H
] entry: fail_state[02] = 0; E
: F
S . "
e T — o
; :
i [thrat> max_throt | throt < min_throt]/ i
E [speed==0 & prass < zero_thresh]/ [
; normal i
i : fai =0 - :
1 entry: fail_stata[THROT] = 0; fail HEal =i I
] antry: fail_stata[THROT] = 1; antry: fail_stals(SPEED] = 0 entry: fail_stateSPEED] = :
; :
é [throt > min_throt & throt < max_throt] [spaad = 0]/ i
i ! ;
] :
il 8
: Multi i
] INC i
i = One 4 '
: 2 1 i
H H
] i

."F_l-l Ay s ,

: = Fuel_Disablad i

i [speed = max_speed | antry: fuel_mode = DISABLED !

i ﬁunning ;'}_i‘_, 1\ ;

: ‘Tow_Emissions . Rich_Mixlure i

i entry: fuel_mode = LOW \H) antry: fuel_mode = RICH i

1 [

| [in{Fail One)| = :

=] I

| Narmal [tiri Fail_Multi)] 1 i

i . 1 i

i [in{Fail.Nonea)] 3. M 1

! enterFall Mulli) i

E 2._,_1 [in{Fail.Ona}} r i

i :

. exit{Fail. Multi) :

' 02 normal) i

i [in{O2.normal)] Y, i

i [

11-37

1 1 Model Slicer

The Model Slice Manager is also updated to show the time interval in which the
warmup state is active:

Actual simulation time: 0.01 to 3.86 seconds : 1 active interval

The highlight shows a normal to fail transition in the Pressure state, showing
that a pressure failure occurred during the time interval in which the Warmup state
was active.

Constrain the Model Highlight to the Intersection of the Active Time Intervals of
a Stateflow State and Transition

1 Clear any time interval constraints from the Model Slice Manager.
2 Constrain the model highlight to only those time intervals in which the 02 > fail
state is active.

11-38

Highlight Active Time Intervals by Using Activity-Based Time Slicing

‘oz {Pressure §
] T H
: 1 :
] i ! [press = max_press | prass < min_press) :
E warmup E T i i ' :
] try: fail_state[02] = 1; go = max_sgo); {1 E
] entry: fail_state[02] {1 narmal Tail ;
: E] entry: fail_stale[PRESS] = eniry: fail_stale|PRESS] = 1 '
] [t = 62 _t_thresh] i i
i [Ego = max_ega/ 1} i
E normal i i [press = min_press & press < max_press] / E
: enlry: fail_state[02] = 0, 1] H
=. i | ;
W AN "
fate Gped T Y

thrat=> max_thrat | throt < min_throt)/

Fail INC [speed==0 & prass < zero_thresh]f

narmal u
eniry: fail_state[THROT] = 0; Tail
antry: fail_stae[THROT] = 1;

anitry: fail_state[SPEED] = 0 entry: fail_state{SPEED] =

normal ‘ fail

[throt = min_throt & throt = max_throd] [spead = 0] f

! Fall.DEC

INC
None Tra 4 Two 9 - Three |4 Faur
= I 1 me—i

S

[Fueling_Made y
et {Fuel_Disabled :
i [speed > max_speed | antry: fuel_made = DISABLED i
1 !

Rurininy i
E 0 Overspead i
] Low_Em , :
| ntry: | Lo ’ ! 2 :
] v
i Fail.Onej] [in{Speed.normal) & ... ;
E [Yirs{Fail_Multi)] speed < (max_spaed - hys)] i
: 1} . |
1 enter(Fall Muiti)) [iriFal Mol i
1 1 ' —2 :
:
i axit{Fail Multi) .
1 [
: \ i

Model Slicer is updated to highlight only those portions of the model that are active
during the time intervals in which the 02 > fail state is active. The Model Slice

11-39

1 1 Model Slicer

11-40

Manager is also updated to show the time interval in which the 02 > fail state is
active:

Actual simulation time: 4.83 to 20 seconds : 1 active interval

To constrain the highlighting to the time interval in which the 02 > fail state is
active and the normal to fail transition occurs for the Throttle chart, right-click
the normal to fail transition and add it as a constraint. Model Slicer is updated to
highlight only those portions of the model that are active during the intersection of
the time intervals in which the 02 > fail state is active and the normal to fail
transition occurs for the Throttle chart.

Highlight Active Time Intervals by Using Activity-Based Time Slicing

L ¢Pressure

1 H

s - |

i warmup | : :

i antry: fail_stata[0Z) = 1; [Ego = max_ega / i]

i i narmal

] i antry: fail_stale[PRESS] =
: [t> 62 1 thresh] i

; [Ego > max_ego)/ 11

: normal il

: entry: fail_stata[02] = 0; 1l

=. i
O SN
Tvatts (Gpund

hrot= max_thrat | throt = min_throt])/

Fail INC |spaad==

narmal

[press = max_press | press < min_prass]

fail
entry: fail_stata[PRESS] = 1

[press = min_prass & press = max_press] |

& prass < zero_thrash)f

entry: fail_state[THROT] = 0, I

fail narmal
antry: fail_state[THROT] = 1; 1 entry: fail_state[SPEED] = 0

fail
‘ antry: fail_state[SPEED] =

[thrat = min_thrat & throt = max_throt] [spead = 0]/
i

] INC (Thres
; None One |1 wa Q— - 1 Faur
E 2 I 1 2

[spead = max_spaed |

[Yirs(F il fAulti)]

1untetf}-ail.\’|ulli:‘

ait{Fail.Mult)

{Fuel_Disabled
antry: fuel_made = DISABLED

Overspead

[in{Speed.normal) & ..
spaed < (max_spaed - hys)]

A [ir(Fail Multi)]

The Model Slice Manager is also updated to show the time interval in which the 02 >

fail state is active and the normal to fail transition occurs

for the Throttle chart:

11-41

1 1 Model Slicer

11-42

Actual simulation time: 13.87 to 13.87 seconds : 1 active interval

Activity-Based Time Slicing Limitations and Considerations

For limitations and considerations of activity-based time slicing, see “Model Slicer
Considerations and Limitations” on page 11-54.

Stateflow State and Transition Activity

For more information on Stateflow state and transition activity, see “Chart Simulation
Semantics” (Stateflow), “Types of Chart Execution” (Stateflow), and “Syntax for States
and Transitions” (Stateflow).

See Also

More About

. “Using Model Slicer with Stateflow” on page 11-63
. “States” (Stateflow)
. “Transitions” (Stateflow)

Simplify a Standalone Model by Inlining Content

Simplify a Standalone Model by Inlining Content

You can reduce file dependencies by inlining model content when you generate the sliced
model. Inlining brings functional content into the sliced model and can eliminate model
references, library links, and variant structures that are often not needed for model
refinement or debugging.

If you want to disable inlining for certain block types, open the Model Slice Manager and

click the options button ‘@ Select only the block types for which you want to inline
content. For information on block-specific inlining behavior, see “Inline Content Options”
on page 11-52.

This example demonstrates inlining content of a model referenced by a Model block.

1 Add the path to the example and open the model

addpath(fullfile(docroot, 'toolbox', 'simulink', 'examples'))
open_system('sldvSliceEngineDynamicsExample"')

2 On the Apps tab, under Model Verification, Validation, and Test gallery, click
Model Slicer.

3 In the model, right-click the MAP outport and select Model Slicer > Add as
Starting Point. The path is highlighted through the Model block.

11-43

11 Model Slicer

4 Create a sliced model from the highlight. In the Model Slice Manager, click the
Generate slice button.

5 Enter a file name for the sliced model.

The sliced model contains the highlighted model content. The model reference is
removed.

11-44

Simplify a Standalone Model by Inlining Content

double
fus!

Engine Gas Dynamics

fuel

double

engine spesd

-2 doublz

throttle angle

Engine Spesd, N

Throttle Ang.

MAP [bar)

Throttle & Manifold

o ouple
o2 out
double o
-
airffuel ratio
double
B 2)

MAP

7 Click the arrow to look under the mask of the ThrottleAndManifold subsystem. The
content from the referenced model is inlined into the model in the masked
subsystem.

11-45

1 1 Model Slicer

double

= double

Throttle Ang.

double
Throttle Angle, thets (deg)

Limit to Positive

- Manifiold Pressure, Pm (bark

double
Atmospheric Pressure, Pa (bar)

Throttle Flow, mdot {g/s)

idouble

Atmos pheric
Pressure, Pa
{bar)

double

M {radizec)

Engine Speed, N

Throttle

medot Input {g/'s)

Manifold Pressure, Pm (bar)

double

double

Intake Manifold

11-46

»()

MAP {bar)

Workflow for Dependency Analysis

Workflow for Dependency Analysis

In this section...

“Dependency Analysis Workflow” on page 11-47
“Dependency Analysis Objectives” on page 11-48

Model analysis includes determining dependencies of blocks, signals, and model
components. For example, to view blocks affecting a subsystem output, or trace a signal
path through multiple switches and logic. Determining dependencies can be a lengthy
process, particularly for large or complex models. Use Model Slicer as a simple way to
understand functional dependencies in large or complex models. You can also use Model
Slicer to create simplified standalone models that are easier to understand and analyze,
yet retain their original context.

Dependency Analysis Workflow
The dependency analysis workflow identifies the area of interest in your model, generates

a sliced model, revises the sliced model, and incorporates those revisions in the main
model.

11-47

1 1 Model Slicer

!dentify I\.T a(;nl Incorporate
interest ode changes

Highlighted
Model

Crek
sliced model Sliced Model

Dependency Analysis Objectives

Revised
Sliced Model

Simulation
Debugging
Model revision

To identify the area of interest in your model, determine objectives such as:

* What item or items are you analyzing? Analysis begins with at least one starting point.

* In what direction does the analysis propagate? The dependency analysis propagates
upstream, downstream, or bidirectionally from the starting points.

* What model items or paths do you want to exclude from analysis?

* What paths do you want to constrain? If your model has switches, you can constrain
the switch positions for analysis.

» Is your model a closed-loop system? If so, the highlighted portion of the model can
include model dependencies from the feedback loop. Consider excluding blocks from
the feedback loop to refine the highlighted portion of the model.

* Do you want to analyze static dependencies, or include simulation effects? Static
analysis considers model dependencies for possible simulation paths. Simulation-based
analysis highlights only paths active during simulation.

11-48

See Also

See Also

Related Examples

. “Highlight Functional Dependencies” on page 11-2
. “Refine Highlighted Model” on page 11-13
. “Create a Simplified Standalone Model” on page 11-33

11-49

1 1 Model Slicer

Configure Model Highlight and Sliced Models

In this section...

“Model Slice Manager” on page 11-50

“Model Slicer Options” on page 11-50

“Storage Options” on page 11-50

“Refresh Highlighting Automatically” on page 11-51
“Sliced Model Options” on page 11-51

“Trivial Subsystems” on page 11-52

“Inline Content Options” on page 11-52

Model Slice Manager

Set the properties of your model highlight and standalone sliced model using the Model
Slice Manager.

sy

Click the toggle mode button ‘_/ to switch between model edit mode and model
highlight mode.

If automatic highlighting is disabled in the slice settings, refresh the model highlight

using the refresh button & . Refresh the highlight after changing the slice
configuration.

Model Slicer Options

You can customize the slice behavior using the options dialog box, which is accessed with

the options button @

Storage Options

Changes you make to a model slice configuration are saved automatically. You can store
the slice configuration in the model SLX file, or in an external SLMS file. Saving the

11-50

Configure Model Highlight and Sliced Models

configuration externally can be useful if your SLX file is restricted by a change control
system.

To set the storage location, click the options @ button in the Model Slice Manager and
set the location in the Storage options pane.

Settings

Store in <model_name>.slx
Saves the model slice configuration in your model’s SLX file
Store in external file

Saves the model slice configuration in a separate SLMS file you specify by clicking
the Save As button. The model slice configuration filename is shown in File.

Refresh Highlighting Automatically

Enables automatic refresh of a model highlight after changing the slice configuration.
Settings

on (default)
Model highlighting refreshes automatically.
off

—

Model highlighting must be refreshed manually. Click the refresh button & in the
Model Slice Manager to refresh the highlight.

Sliced Model Options

You can control what items are retained when you create a sliced model from a model
highlight using the options in the Sliced model options pane.

11-51

1 1 Model Slicer

11-52

Option

On (selected)

Off (cleared)

Retain signal
observers

Signal observers, such as
scopes, displays, and test
condition blocks, are
retained in the sliced model.

Signal observers are not retained in
the sliced model (default).

Retain root-level
inports and
outports

Root-level ports are retained
in the sliced model (default).

Root-level ports are not retained in
the sliced model.

Expand trivial
subsystems

Trivial subsystems are
expanded in the sliced model
and the subsystem boundary
is removed (default).

Trivial subsystems are not expanded
in the sliced model and the subsystem
boundary is retained. See“Trivial
Subsystems” on page 11-52.

Trivial Subsystems

If a subsystem has all of these characteristics, Model Slicer considers the subsystem

trivial:

» If the subsystem is virtual, it contains three or fewer nonvirtual blocks.
» If the subsystem is atomic, it contains one or fewer nonvirtual blocks.
* The subsystem has two or fewer inports.

* The subsystem has two or fewer outports.

* The active inport or outport blocks of the subsystem have default block parameters.

» The system does not contain Goto Tag Visibility blocks.
* In the Block Properties dialog box, the subsystem Priority is empty.
* The data type override parameter (if applicable) is set to use local settings.

Note If you generate a sliced model which does not remove contents of a particular
subsystem, the subsystem remains intact in the sliced model.

Inline Content Options

When you create a sliced model from a highlight, model items can be inlined into the
sliced model. The Inline content options pane controls which model components are
inlined in generating a sliced model.

See Also

Model Inlining on (selected) Inlining off (cleared)

Component

Libraries Model items inside sliced Model items inside sliced libraries are
libraries are inlined in the |not inlined in the sliced model and
sliced model and the library |library link remains in place.
link is removed. (default)

Masked Model items inside sliced Model items inside sliced masked

subsystems masked subsystems are subsystems are not inlined in the sliced
inlined in the sliced model. |model and the mask is retained.
(default)

The mask is retained in the
sliced model.

Model blocks Model items are inlined to |Model items are not inlined to the sliced
the sliced model from the model from the model referenced by the
model referenced by the Model block. The Model block is
Model block. The Model retained.
block is removed. (default)

Note Model Slicer cannot
inline model blocks that are
not in Normal mode.

Variants Model items are inlined to |Model items are not inlined to the sliced
the sliced model from the model from the variant. The variant is
active variant. Variants are |retained.
removed. (default)

See Also

Related Examples
. “Highlight Functional Dependencies” on page 11-2

. “Refine Highlighted Model” on page 11-13

. “Simplify a Standalone Model by Inlining Content” on page 11-43

11-53

1 1 Model Slicer

Model Slicer Considerations and Limitations

11-54

When you work with the Model Slicer, consider these behaviors and limitations:

In this section...

“Model Compilation” on page 11-54

“Model Highlighting and Model Editing” on page 11-54

“Standalone Sliced Model Generation” on page 11-54

“Sliced Model Considerations” on page 11-55

“Port Attribute Considerations” on page 11-55

“Simulation Time Window Considerations” on page 11-56
“Simulation-based Sliced Model Simplifications” on page 11-57

“Starting Points Not Supported” on page 11-58

“Model Slicer Support Limitations for Simulink Software Features” on page 11-58
“Model Slicer Support Limitations for Simulation Stepper” on page 11-59
“Model Slicer Support Limitations for Simulink Blocks” on page 11-59
“Model Slicer Support Limitations for Stateflow” on page 11-60

Model Compilation

When you open Model Slice Manager, the model is compiled. To avoid a compilation error,
before you open Model Slice Manager, make sure that the model is compilable.

Model Highlighting and Model Editing
When a slice highlight is active, you cannot edit the model. You can switch to model edit

mode and preserve the highlights. When you switch back to slice mode, the slice
configuration is recomputed and the highlight is updated.

Standalone Sliced Model Generation

Sliced model generation requires one or more starting points for highlighting your model.
Sliced model generation is not supported for:

Model Slicer Considerations and Limitations

» Forward-propagating (including bidirectional) dependencies
* Constraints
» Exclusion points

Sliced model generation requires a writable working folder in MATLAB.

Sliced Model Considerations

When you generate a sliced model from a model highlight, simplifying your model can
change simulation behavior or prevent the sliced model from compiling. For example:

* Model simplification can change the sorted execution order in a sliced model
compared to the original model, which can affect the sliced model simulation behavior.

+ Ifyou generate a sliced model containing a bus, but not the source signal of that bus,
the sliced model can contain unresolved bus elements.

+ Ifyou generate a sliced model that inlines a subset of the contents of a masked block,
make sure that the subsystem contents resolve to the mask parameters. If the contents
and mask do not resolve, it is possible that the sliced model does not compile.

» If the source model uses a bus signal, ensure that the sliced model signals are
initialized correctly. Before you create the sliced model, consider including an explicit
copy of the bus signal in the source model. For example, you can include a Signal
Conversion block with the Output option set to Signal Copy.

» For solver step sizes set to auto, Simulink calculates the maximum time step in part
based on the blocks in the model. If the sliced model removes blocks that affect the
time step determination, the time step of the sliced model can differ from the source
model. The time step difference can cause simulation differences. Consider setting
step sizes explicitly to the same values calculated in the source model.

Port Attribute Considerations

You can use blocks that the Model Slicer removes during model simplification to
determine compiled attributes, such as inherited sample times, signal dimensions, and
data types. The Model Slicer can change sliced model port attributes during model
simplification to resolve underspecified model port attributes. If the Model Slicer cannot
resolve these inconsistencies, you can resolve some model port attribute inconsistencies
by:

» Explicitly specifying attributes in the source model instead of relying on propagation
rules.

11-55

1 1 Model Slicer

11-56

* Including in the sliced model the blocks that are responsible for the attribute
propagation in your source model. Before you slice the model, add these blocks as
additional starting points in the source model highlighting.

* Not inlining the model blocks that are responsible for model port attributes into the
sliced model. For more information on model items that you can inline into the sliced
model, see “Inline Content Options” on page 11-52.

Because of the way Simulink handles model references, you cannot simultaneously
compile two models that both contain a model reference to the same model. When you
generate a sliced model, the Model Slicer enters the Slicer Locked (for attribute
checking) mode if these conditions are true:
* The parent model contains a referenced model.
* The highlighted portion of the parent model contains the referenced model.
* The referenced model is not inlined in the sliced model due to one of the following

* You choose not to inline model blocks in the Inline content options pane of the

Model Slicer options.

* The Model Slicer cannot inline the referenced model. For more information on
model items that Model Slicer cannot inline, see “Inline Content Options” on page
11-52.

To continue refining the highlighted portion of the parent model, you must first activate

the slice highlight mode \E/

Simulation Time Window Considerations

Depending on the step size of your model and the values that you enter for the start time
and stop time of the simulation time window, Model Slicer might alter the actual
simulation start time and stop time.

* Ifyou enter a stop or start time that falls between time steps for your model solver, the
Model Slicer instead uses a stop or start time that matches the time step previous to
the value that you entered. For more information on step sizes in Simulink, see
“Compare Solvers” (Simulink).

* The stop time for the simulation time window cannot be greater than the total
simulation time.

Model Slicer Considerations and Limitations

Simulation-based Sliced Model Simplifications

When you slice a model by using a simulation time window, some blocks in the source
model, such as switch blocks, logical operator blocks, and others, can be replaced when
creating the simplified standalone model. For example, a switch block that always passes
one input is removed, and the active input is directly connected to the output destination.
The unused input signal is also removed from the standalone model.

This table describes the blocks that the Model Slicer can replace during model

simplification.

Block in Source Model

Simplification

Switch

Multiport Switch

If only one input port is active, the switch is
replaced by a signal connecting the active
input to the block output.

Enabled Subsystem or Model

If the subsystem or model is always
enabled, remove the control input and
convert to a standard subsystem or model.

If the subsystem is never enabled, replace
the subsystem with a constant value
defined by the initial condition.

Triggered Subsystem or Model

If the subsystem or model is always
triggered, remove the trigger input and
convert to a standard subsystem or model.

If the subsystem is never triggered, replace
the subsystem with a constant value
defined by the initial condition.

Enabled and Triggered Subsystem or Model

If the subsystem is always executed,
convert to a standard subsystem or model

If the subsystem is never executed, replace
the subsystem with a constant value
defined by the initial condition.

Merge

If only one input port is active, the merge is
replaced by a signal connecting the active
input to the block output.

11-57

1 1 Model Slicer

11-58

Block in Source Model

Simplification

If

If Action

If only one action subsystem is active,
convert to a standard subsystem or model
and remove the If block.

Switch Case

Switch Case Action

If only one action subsystem is active,
convert to a standard subsystem or model
and remove the Switch Case block.

Logical operator

Replace with constant when the block
always outputs true or always outputs false.

Replace the input signal with a constant if
the input signal is always true or always
false.

Starting Points Not Supported

The Model Slicer does not support these model items as starting points:

* Virtual blocks, other than subsystem Inport and Outport blocks

* Output signals from virtual blocks that are not subsystems

Model Slicer Support Limitations for Simulink Software

Features

The Model Slicer does not support these features:

* Arrays of buses

* Analysis of Simulink Test test harnesses

* Models that contain Simscape physical modeling blocks

* Models that contain algebraic loops

* Loading initial states from the source model for sliced model generation, such as data
import/export entries. Define initial states explicitly for the sliced model in the sliced

model configuration parameters.

* Component slicing of the subsystems and referenced models that have multiple rates.

* Component slicing of the “Conditional Models” (Simulink) and Conditionally Executed

Subsystems (Simulink).

Model Slicer Considerations and Limitations

Model Slicer Support Limitations for Simulation Stepper

When using Model Slicer with Simulation Stepper, the slice highlight after a Step Back

may not be limited to a single step. The highlight can be influenced by the Simulation

Stepping Options > Interval between stored back steps. For more information, see
“Interval between stored back steps” (Simulink).

Model Slicer Support Limitations for Simulink Blocks

The table lists the Model Slicer support limitations for Simulink Blocks.

Block

Limitation

For Each Subsystem block

The simulation impact is ignored for blocks in a For Each
subsystem. Therefore, applying a simulation time window
returns the same dependency analysis result as a
dependency analysis that does not use a simulation time
window.

Function Caller block

Model Slicer does not support Function Caller blocks.

MATLAB Function block

Model Slicer assumes that any output depends on all
inputs in the upstream direction and any input affects all
outputs in the downstream direction.

Merge block

If you generate a slice by using a simulation time window,
Merge blocks are removed in the standalone model if only
a single path is exercised.

11-59

1 1 Model Slicer

Block Limitation

Model block Model Slicer does not support multiple instances of the
same Model block with its Simulation mode set to
Normal.

Model Slicer does not resolve data dependencies
generated by global data store memory in Model blocks
with Simulation mode set to Accelerator.

Model Slicer does not support function-call root-level
Inport blocks. For more information, see Export-Function
Models (Simulink).

Model Slicer does not analyze the contents within a
reference to a “Reference Protected Models from Third
Parties” (Simulink). When you slice a model that contains a
protected model reference, the Model Slicer includes the
entire model reference in the sliced model.

Resettable Subsystem block |Model Slicer does not support Resettable Subsystem
blocks.

S-function block Model Slicer assumes that any output depends on all
inputs in the upstream direction and any input affects all
outputs in the downstream direction.

Model Slicer does not determine dependencies that result
from an S-function block accessing model information
dependent on a simulation time window.

State Read block Model Slicer does not support State Read blocks.

State Write block Model Slicer does not support State Write blocks.

Model Slicer Support Limitations for Stateflow

* When you highlight models containing a Stateflow chart or state transition table,
Model Slicer assumes that any output from the Chart block or State Transition Table
block depends on all inputs to the Chart block or State Transition Table block.

* When you slice a model with a Stateflow chart or a state transition table, Model Slicer
does not simplify the chart or table. The chart or table is included in its entirety in the
sliced model.

11-60

Model Slicer Considerations and Limitations

If you do not “Define a Simulation Time Window” on page 11-13 when you highlight
functional dependencies in a Stateflow chart or state transition table, Model Slicer
assumes that all elements of the chart or table are active. Model Slicer highlights the
entire contents of such charts and tables.

When you highlight functional dependencies in a Stateflow chart or state transition
table for a defined simulation time window, Model Slicer does not highlight only the
states and transitions that affect the selected starting point. Instead, the Model Slicer
highlights elements that are active in the time window that you specify.

The Model Slicer does not determine dependencies between Stateflow graphical
functions and function calls in other Stateflow charts.

Graphical functions and their contents that were not active during the selected time
window can potentially remain highlighted in some cases.

Entry into states that are preempted due to events can potentially remain highlighted
in some cases. For example, after a parent state is entered, an event action can exit
the state and preempt entry into the child state. In such a case, the Model Slicer
highlights the entry into the child state.

The Model Slicer does not support:

* Embedded MATLAB Function blocks

* Simulink functions

¢ Truth Table blocks

* Machine-parented data or events in Stateflow.

Activity-Based Time Slicing Considerations for Stateflow

As measured by the 'Executed Substate' decision coverage, state activity refers to these
during/exit actions:

Entry into a state does not constitute activity.

The active time interval for a state or transition includes the moment in which the
selected state exits and the subsequent state is entered.

Indirect exits from a state or transition do not constitute activity. For example, if a
state C exits because its parent state P exits, state C is not considered active.

For more information on decision coverage for Stateflow charts, see “Decision Coverage
for Stateflow Charts” (Simulink Coverage).

11-61

1 1 Model Slicer

11-62

When you “Highlight Active Time Intervals by Using Activity-Based Time Slicing” on page
11-34, you can select states and transitions only as activity constraints. You cannot select
these Stateflow objects as constraints:

* Parallel states

» Transitions without conditions, such as unlabeled transitions which do not receive
decision coverage

» States or transitions within library-linked charts

* XOR states without siblings. For example, if a state P has only one child state C, you
cannot select state C as an activity constraints because state P does not receive
decision coverage for the executed substate

See Also

“Algebraic Loop Concepts” (Simulink) | “Solver Pane” (Simulink)

Using Model Slicer with Stateflow

Using Model Slicer with Stateflow

In this section...

“Model Slicer Highlighting Behavior for Stateflow Elements” on page 11-63
“Using Model Slicer with Stateflow State Transition Tables” on page 11-64
“Support Limitations for Using Model Slicer with Stateflow” on page 11-64

You can use Model Slicer highlighting to visually verify the logic in your Stateflow charts
or tables. After you “Define a Simulation Time Window” on page 11-13, you use Model
Slicer to highlight and slice Stateflow elements that are active within the selected time
window.

Note If you do not “Define a Simulation Time Window” on page 11-13 when you highlight
functional dependencies in a Stateflow chart or table, Model Slicer assumes that all
elements of the chart or table are active. Model Slicer highlights the entire contents of
such charts and tables.

In this section...

“Model Slicer Highlighting Behavior for Stateflow Elements” on page 11-63
“Using Model Slicer with Stateflow State Transition Tables” on page 11-64
“Support Limitations for Using Model Slicer with Stateflow” on page 11-64

Model Slicer Highlighting Behavior for Stateflow Elements

Model Slicer highlights a Stateflow element if it was executed in the specified time
window. Some examples include:

* Achart, if it is activated in the specified a time window.

* A state, if its entry, exit, or during actions are executed in the specified a time window.
* A parent state, if its child state is highlighted in the specified a time window.

* A transition, if it is taken in the specified time window, such as inner, outer, and
default. If the conditions of a transition are evaluated, but the transition is not taken,
Model Slicer does not highlight the transition.

11-63

1 1 Model Slicer

11-64

Using Model Slicer with Stateflow State Transition Tables

Model Slicer does not directly highlight the contents of Stateflow state transition tables.
To view highlighted functional dependencies in a state transition table, you must view the
auto-generated diagram for the state transition table. For instructions on how to view the
auto-generated diagram for the state transition table, see “Generate Diagrams from State
Transition Tables” (Stateflow).

Support Limitations for Using Model Slicer with Stateflow

For support limitations when you use Model Slicer with Stateflow, see “Model Slicer
Support Limitations for Stateflow” on page 11-60.

See Also

More About

. “Highlight Functional Dependencies” on page 11-2
. “Refine Highlighted Model” on page 11-13
. “Chart Simulation Semantics” (Stateflow)

Isolating Dependencies of an Actuator Subsystem

Isolating Dependencies of an Actuator Subsystem

This example demonstrates highlighting model items that a subsystem depends on. It also
demonstrates generating a standalone model slice from the model highlight.

In this section...

“Choose Starting Points and Direction” on page 11-65

“View Precedents and Generate Model Slice” on page 11-67

Choose Starting Points and Direction

1 Open the f14 example model.

f14

2 On the Apps tab, under Model Verification, Validation, and Test gallery, click
Model Slicer.

11-65

1 1 Model Slicer

Model Slice Manager: f14 e
P
» Slice configuration list ?; @ l‘-)
Name: |untit|ed | J
Description:

Signal propagation: %= upstream ~

Starting Points [Add all outports
Right-click model ifems fo select.

Simulation time window
Run simulation ®

Use existing simulation data

Export to Web Generate Slice

Simulation time window enabled

3 Inthe Model Slice Manager, click the arrow to expand the Slice configuration list
list. Set the slice properties:
* Name: Actuator_slice
* To the right of Name, click the colored square to set the highlight color. Choose

magenta ! from the palette.
* Signal Propagation: upstream.

4 Add the Actuator Model subsystem as a starting point. In the model, right-click the
Actuator Model subsystem and select Model Slicer > Add as Starting Point.

11-66

Isolating Dependencies of an Actuator Subsystem

Muodel Slice Manager: sldvSliceClimateControlExample X

 Slice configuration list 3; @ (-)

Name Slice % Bl

s OutlSlice 57% %

Name: |0ut15|ice | !
Description:

Signal propagation: #= upstream &

Starting Points Iclear al
= L outt

¥ Simulation time window
» Refine Dead Logic

Export to Web |Generate Slice

Slicer Active

View Precedents and Generate Model Slice

1 The model highlights the upstream dependencies of the Actuator Model
subsystem.

11-67

11 Model Slicer

Stick Inpurt (in)
alpha (rad) Elevator Command {deg)
q iradisec)

Trace the following dependency path. Aircraft Dynamics Model is highlighted
via the Pitch Rate q signal, which is an input to Controller, the output of which
feeds Actuator Model.

2 Generate a standalone model containing the highlighted model items:

a In the Model Slice Manager, click Generate slice.

b In the Select File to Write dialog box, select the save location and enter
actuator slice model.

¢ Click Save.

3 The sliced model contains the highlighted model items.

11-68

Isolating Dependencies of an Actuator Subsystem

oooo
(=] =]

Stick Input (in)
| alpha [rad) Elewator Command {deg) —- L | Elevator Deflection d (deg)
Tas+l w
—=| q (rad’sec) wertical Welocity w (ft'sec)
Actuator
Controller Model
| T Wertical Gust wiGust (ftisec)
Piich Rat di's| 4
wiust ate g (radisec) _l_l
Wig | Mw Rotary Gust qGust (radisac) —
aqGaest
m -
) Aircraft
Dryden Wind \ Dynamics
Gust Models by Model
F-14 Flight Cenirol

Copyright 1920-2014 The MathWorks, Inc.

4 To remove highlighting from the model, close the Model Slice Manager.

11-69

1 1 Model Slicer

Isolate Model Components for Functional Testing

You can create a standalone model for the model designed using “Design Model
Architecture” (Simulink). The model slice isolates the model components and relevant
signals for debugging and refinement.

Isolate Subsystems for Functional Testing

To debug and refine a subsystem of your model, create a standalone model. The
standalone model isolates the subsystem and relevant signals. You can observe the
subsystem behavior without simulating the entire source model.

Note You cannot slice virtual subsystems. To isolate a virtual subsystem, first convert it
to an atomic subsystem.

Isolate a Subsystem with Simulation-Based Inputs

To observe the simulation behavior of a subsystem, include logged signal inputs in the
standalone model. When you configure the model slice, specify a simulation time window.
For large models, observing subsystem behavior in a separate model can save time
compared to compiling and running the entire source model.

This example shows how to include simulation effects for the Controller subsystem of a
cruise control system.

11-70

Isolate Model Components for Functional Testing

enable > #| =nabie
enable enable
throttie
brake > o brake_pressurs throtie
brake_pressure throttle P throttle
st > ==t
set
e > o inc: wehicle_spesd
inc
dec > »d=
dec
target — brake
driver_throt > driver_throt Brgat
|| ariver_throt target
TestCases SizeType
pead
Contraller Plant
spesd q IJ—L]_ wehicle_speed
z l_
=Init= 0= ZeroDrderHold

To open the Model Slice Manager, select Analysis > Model Slicer.

2 To select the starting point for dependency analysis, right-click a block, signal, or a
port, and select Model Slicer > Add as Starting point.

3 Toisolate the subsystem in the sliced model, right-click the subsystem, and select
Model Slicer > Slice component.

In the example model, selecting Slice component for the Controller subsystem
limits the dependency analysis to the path between the starting point (the throttle
outport) and the Controller subsystem.

11-71

11 Model Slicer

4 To specify the simulation time window:

a In the Model Slice Manager, select Simulation time window.

Click the run simulation button @
¢ Enter the simulation stop time, and click OK.

11-72

Isolate Model Components for Functional Testing

Record simulation time window: ex_model_slicer_cruise.., =

Please specify stop time of the simulation time window and
press OK to start simulation. The model is in editable
highlight mode now.

Stop time: |45 |

Log inputs and outputs of the starting points

Save As |\5Idv\example.%‘kmodelﬁIicer\ex_mcdel_l Change

The Model slicer analyzes the model dependencies for the simulation interval.

5 To extract the subsystem and logged signals, click Generate slice. Enter a file name
for the sliced model.

Based on the dependency analysis, a Signal Builder block supplies the signal inputs
to the subsystem.

In the sliced model shown, the sliced model Signal Builder block contains one test
case representing the signal inputs to the Controller subsystem for simulation time 0-

45 seconds.
Size Type
Test Case 1 enablz
==t =t
inc nc
/\ throtle |——— (7)
dec throttle
diriwer_throt diriver_throt
speed speed
Inputs Test Unit {copied from Controller)

11-73

1 1 Model Slicer

Isolate Referenced Model for Functional Testing

To functionally test a referenced model, you can create a slice of a referenced model

treating it as an open-loop model.

You can isolate the simplified open-loop referenced

model with the inputs generated by simulating the close-loop system.

This example shows how to slice the referenced model controller of a fault-tolerant fuel
control system for functional testing. To create a simplified open-loop referenced model

for debugging and refinement, you generate a slice of the referenced controller.

Step 1: Open the Model

The fault-tolerant fuel control system model contains a referenced model controller

fuel rate control.

open_system('sldvSlicerdemo fuelsys');

Fault-Tolerant Fuel Control System

I

throttle
command

engine_gas_dynamics

X V)
- # engine speed 02_out
|irad/s))

{radis}

throttle_sw
throltle

Throttle Angle
Fault Switch h

L

!
1
roftle_Angle_Selector

engine_speed

#| throttle angle MAP F—
(deg) {bar)

- fuel_rate_contr

Engine Spead speed_sw

Engine Speed
Fault Switch

|

! spaad
Ly
Engine_Speed_Selector

—] fuel airffuel ratio
s) el [T} m
s} &

Iz
¥ sensarsfuel_rate F—®|Convert
{o's) fuel

Convert

To Plant

-
y¥yYy Yy ¥y v

ego_Sw

EGC Fault Switch

ego

02_\oltage_Selector

v

v

air_fuel_ratio

fuel

fuel_rata_control

map_sw
map

MAF Fault Switch

-
P

MAP_Selector

[=h

: =

To Controller

11-74

Copyright 1930-2017 The Math\Warks, Inc.

Isolate Model Components for Functional Testing

Step 2: Slice the Referenced Model

To analyze the fuel rate control referenced model, you slice it to create a standalone
open-loop model. To open the Model Slice Manager, select Apps > Model Verification,
Validation, and Test > Model Slicer, or right-click the fuel rate control model
and select Model Slicer > Slice component. When you open the Model Slice Manager,
the Model Slicer compiles the model. You then configure the model slice properties.

Note: The simulation mode of the sldvSlicerdemo fuelsys model is Accelerator
mode. When you slice the referenced model, the software configures the simulation mode
to Normal mode and sets it back to its original simulation mode while exiting the Model
Slicer.

Step 3: Select Starting Point

Open the fuel rate control model, right-click the fuel-rate port, and select Model
Slicer > Add as starting point. The Model Slicer highlights the upstream constructs
that affect the fuel rate.

11-75

11 Model Slicer

Step 4: Generate Slice

a. In the Model Slice Manager dialog box, select the Simulation time window.
b. Click Run simulation.
c. For the Stop time, enter 20. Click OK.

d. Click Generate Slice. The software simulates the sliced referenced model by using the
inputs of the close-loop sldvSlicerdemo fuelsys model.

11-76

Isolate Model Components for Functional Testing

Maodel Slice Manager: sldvSlicerderno_fuelsys

b Slice configuration list

Name: |untitled

Description:

-

Signal propagation: #= |upstream

Slice component

L} fuel_rate_control Record simulation time window: sldvSlicerdemo_fuelsys x
Starting Points [clear all
B AL fuel_rate Please specify stop time of the simulation time window and
press OK to start simulation. The model is in editable highlight
mode now.
Stop time: |20 |

Log inputs and outputs of the starting points

Save As }rm_fuelsvs\sldvslicerdemu_fueIsyﬁ.slslicex| | Change |

[ok | canca |

¥ Simulation time window

Run simulation

Use existing simulation data

b Refine Dead Logic
Export to Web Generate Slice

11-77

Slicer Active

1 1 Model Slicer

For the sliced model, in the Signal Builder window, one test case is displayed that
represents the signals input to the referenced model for simulation time 0-20 seconds.

Test Cass 1

f/“‘m
L

sensore.throtile

EEI¥S0ME. BpsSedl

SENEOrs. &gl

ESIE0rE. map

{2=g)

{rad/s)

bar)

Inputs

11-78

Size-Type

SENE0rE

fual_rate
o=}

fusl_rate

See Also

(4 Signal Builder (sldvSlicerdemo_fuelsys_slice10/Inputs) - O *
File Edit Group Signal Axes Help kS
FEH| P RR | oo [~ FREM » o0 w4 E
Active Group: | Test Case 1 v | e = | m
100
sensors.throttle
50
0
301
sensors.speed
300
299 1 1 1 1 1 1 1 1 1 [|
1
Sensors.ego
05
0k 1 1
1F
Sensors.map
0.5
1 1 1 1
1] 2 4 6 8

Hame: sensors.throttie

Index: |1 ~

Click to select, Shift+click to add sensors. throttie (#1) [YMin YMax]

See Also

“Model Slicer Considerations and Limitations” on page 11-54 | “Highlight Functional
Dependencies” on page 11-2

11-79

1 1 Model Slicer

Refine Highlighted Model by Using Existing .slslicex or
Dead Logic Results

11-80

When you run simulation or refine dead logic, Model Slicer saves your simulation results
at the default location <current folder>\modelslicer\<model name>

\<model name>.slslicex. For large or complex models, the simulation time can be
lengthy. To refine the highlighted slice, you can use the existing Model Slicer simulation
data or dead logic results.

If you want to highlight functional dependencies in the model again at another time, you
can use the existing. slslicex simulation time window data without needing to
resimulate the model. Model Slicer then uses the existing simulation data to highlight the
model.

Open the Simulink model.

To open the Model Slice Manager, select Analysis > Model Slicer.

Select Simulation time window.

A W N R

Click Use existing simulation data ‘E’
5 Navigate to the existing .s1lslicex data and click Open.

To refine the dead logic for dependency analysis, you can import the existing Simulink
Design Verifier data file or use the existing . slslicex dead logic results. For more
information see, “Dead Logic Detection” (Simulink Design Verifier) and “Simulink Design
Verifier Data Files” (Simulink Design Verifier).

In Model Slice Manager, select Refine Dead Logic and click Get Dead Logic Data.

2 To import the Simulink Design Verifier data file, click Browse for SLDV data file
=)

To load the existing dead logic results, click Browse for existing dead logic results

o)

3 Navigate to the existing data and click Open.

Refine Highlighted Model by Using Existing .slslicex or Dead Logic Results

Madel Slice Manager: sldvdermo_cruise_control ot
¢ Slice configuration list sa] et
Mame: untitled .
Description: Refine Dead Logic x
Generate results
1 Run analysis
Signal propagation: 4= |upstream T
gnal propag P Analysis time: | 300 | |®|
Starting Points [clear all
= I throt Import SLDV data
Browse for SLDV data file

Save As Lcmise_cunhol.slslicex| | Change |

Load results
Browse for existing dead logic results
* Simulation time window
Run simulation k

Use existing simulation data

¥ Refine Dead Logic
Get Dead Logic Data

Export to Web Generate Slice
Slicer Active

11-81

1 1 Model Slicer

See Also

More About

. “Highlight Functional Dependencies” on page 11-2
. “Configure Model Highlight and Sliced Models” on page 11-50
. “Refine Dead Logic for Dependency Analysis” on page 11-26

11-82

Simplification of Variant Systems

Simplification of Variant Systems

In this section...

“Use the Variant Reducer to Simplify Variant Systems” on page 11-83

“Use Model Slicer to Simplify Variant Systems” on page 11-83

If your model contains “Variant Systems” (Simulink), you can reduce the model to a
simplified, standalone model containing only selected variant configurations.

Use the Variant Reducer to Simplify Variant Systems

After you Add and Validate Variant Configurations (Simulink), you can reduce the model
from the Variant Manager:

Open a model containing at least one valid variant configuration.

N

Select View >> Variant Manager, or right-click a variant system and select Variant
>> Open in Variant Manager.

Click Reduce model....
Select one or more variant configurations.
Set the Output directory.

o U AW

Click Reduce to create a simplified, standalone model containing only the selected
variant configurations.

The Variant Reducer creates a simplified, standalone model in the output directory you
specified containing only the variant configurations you selected. For more information,
see “Reduce Models Containing Variant Blocks” (Simulink).

Use Model Slicer to Simplify Variant Systems

After you Add and Validate Variant Configurations (Simulink), you can use Model Slicer to
create a simplified, standalone model containing only the active variant configuration.
When you “Highlight Functional Dependencies” on page 11-2 in a model containing
variant systems, only active variant choices are highlighted. When you “Create a
Simplified Standalone Model” on page 11-33 from a model highlight that includes variant
systems, Model Slicer removes the variant systems and replaces them with the active
variant configurations.

11-83

1 1 Model Slicer

11-84

For instructions on how to change the active variant configuration and how to set default
variant choices, see “Working with Variant Choices” (Simulink).

See Also

More About

. “Create a Simple Variant Model” (Simulink)

. “Define, Configure, and Activate Variants” (Simulink)

. “Introduction to Variant Controls” (Simulink)

. “Reduce Models Containing Variant Blocks” (Simulink)

Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

Programmatically Resolve Unexpected Behavior in a
Model with Model Slicer

In this example, you evaluate a Simulink model, detect unexpected behavior, and use
Model Slicer to programmatically isolate and resolve the unexpected behavior. When you
plan to reuse your API commands and extend their use to other models, a programmatic
approach is useful.

Prerequisites

Be familiar with the behavior and purpose of Model Slicer and the functionality of the
Model Slicer API. “Highlight Functional Dependencies” on page 11-2 outlines how to use
Model Slicer user interface to explore models. The slslicer, slsliceroptions, and
slslicertrace function reference pages contain the Model Slicer API command help.

Find the Area of the Model Responsible for Unexpected
Behavior

The sldvSliceCruiseControlHarness test harness model contains a cruise controller
subsystem sldvSliceCruiseControl and a block, TestCases, containing a test case
for this subsystem. You first simulate the model to execute the test case. You then
evaluate the behavior of the model to find and isolate areas of the model responsible for
unexpected behavior:

1 Openthe sldvSliceCruiseControlHarness test harness for the cruise control
model.

open_system('sldvSliceCruiseControlHarness")

11-85

1 1 Model Slicer

Shortinc

enbl

cnel

set

_ resum e
inc

/\ dec
brakeP

— key

gear
throtDrv
vehsp

L | mode_exp

TestCases

Scope

Size-Type
enbl sldvSliceCruiseControl
o | (D)
cnel requn dviver_request _
dviver_request
st
resume it act_status a
. act_status
inc
dec mode I- »{ 3
operation_mode @
brakeP operation_mode
= targetSp
targel speed
gear target_speed
throtDrv
- throtCC pr »{ 5)
= throttle
Madel
int3i2 ™ Comwvert cpeded_mode > verify
dtc1 dtc

9

Assertion

Note The Assertion block is set to Stop simulation when assertion fails when the
actual operation mode is not the same as the expected operation mode.

The TestCases block contains several test inputs for sldvSliceCruiseControl.

test cases. You receive an error during the ResumeWO test case.

11-86

[
In the TestCases Signal Builder click the Run all button > to run all of the included

Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

-

fT Error Dialog El = @

Simulation failed in cvsim due to:
6 Asszertion detected in “sldvSliceCruiseControl Hames s/ Assertion” at time 27

Simulation failed

The Assertion block halted simulation at 27 seconds, because the actual operation
mode was not the same as the expected operation mode. Click OK to close this error
message.

In the sldvSliceCruiseControlHarness model, double-click the Assertion block, clear
Enable assertion, and click OK.
set param('sldvSliceCruiseControlHarness/Assertion', 'Enabled’, 'off")

Set the Active Group of the TestCases Signal Builder block to the test case
containing the error and run the simulation again.

signalbuilder('sldvSliceCruiseControlHarness/TestCases', "ACTIVEGROUP', 12)
sim('sldvSliceCruiseControlHarness"')

The Scope block in the model contains three signals:

* operation_mode - displays the actual operation mode of the subsystem.

* expected mode - displays the expected operation mode of the subsystem that
the test case provides.

* verify - displays a Boolean value comparing the operation mode and the
expected mode.

11-87

1 1 Model Slicer

| Scope E@
File Tools View Simulation Help o
@- BOP® | =-A)E-F-

operation mode

The scope shows a disparity between the expected operation mode and the actual
operation mode beginning at time 27. Now that you know the outport displaying the
unexpected behavior and the time window containing the unexpected behavior, use
Model Slicer to isolate and analyze the unexpected behavior.

11-88

Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

Isolate the Area of the Model Responsible for Unexpected
Behavior

1 Create a Model Slicer configuration object for the model using slslicer. The
Command Window displays the slice properties for this Model Slicer configuration.

obj slslicer('sldvSliceCruiseControlHarness"')
obj =

SLSlicer with properties:

Configuration: [1x1 SLSlicerAPI.SLSlicerConfig]
ActiveConfig: 1
DisplayedConfig: []
StorageOptions: [1x1 struct]
AnalysisOptions: [1x1 struct]
SliceOptions: [1x1 struct]
InlineOptions: [1x1 struct]

Contents of active configuration:
Name: 'untitled'
Description: "'
Color: [0 1 1]
SignalPropagation: 'upstream'

StartingPoint: [1x0 struct]
ExclusionPoint: [1x0 struct]
Constraint: [1x0 struct]
SliceComponent: [1x0 struct]
UseTimeWindow: 0O
CoverageFile: "'
UseDeadlLogic: 0
DeadlLogicFile: "'

2 Activate the slice highlighting mode of Model Slicer to compile the model and
prepare it for dependency analysis.

activate(obj)
3 Addthe operation mode outport block as a starting point and highlight it.

addStartingPoint(obj, 'sldvSliceCruiseControlHarness/operation mode")
highlight(obj)

11-89

11 Model Slicer

The area of the model upstream of the starting point and active during simulation is
highlighted.

4 Simulate the model within a restricted simulation time window (maximum 30
seconds) to highlight only the area of the model upstream of the starting point and
active during the time window of interest.

simulate(obj,0,30)

Only the portion of the model upstream of the starting point and active during the
simulation time window is highlighted.

11-90

Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

5 You can further narrow the simulation time window by changing the start time to 20
seconds.

setTimeWindow(obj,20,30)

11-91

11 Model Slicer

6 Create a sliced model sldvSliceCruiseControlHarness sliced containing only
the area of interest.

slicedModel = slice(obj, 'sldvSliceCruiseControlHarness sliced")
open_system('sldvSliceCruiseControlHarness sliced"')

11-92

Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

Size-Type
Shortlnc
anbl | eni
>
cncl -3
reqDry
sal 3
rasume I resme il
) status
inc He=
dec FHe3 operation_mode
operation_mode?
| brakaP He= operation_mode
o> > @
gear = targetSp
throiDry 3
1 hso bpa > —(5)
e throtCC
mode_axp He3 Modal
TestCases

The sliced model sldvSliceCruiseControlHarness sliced now contains a
simplified version of the source model sldvSliceCruiseControlHarness. The
simplified standalone model contains only those parts of the model that are upstream of
the specified starting point and active during the time window of interest.

Investigate the Sliced Model and Debug the Source Model

You can now debug the unexpected behavior in the simplified standalone model and then
apply changes to the source model.

1 To enable editing the model again, terminate the Model Slicer mode.

terminate(obj)
2 Navigate to the area of the sliced model that contains the unexpected behavior.

open_system('sldvSliceCruiseControlHarness sliced/Model/CruiseControlMode/opMode/resumeCondition/hasCan

11-93

1 1 Model Slicer

opMode.Disable

[
*

D

mode_prev

11-94

opMode. Enable

false T
» true T +1 1)
YESno

AND ;-} i F

77 |

Init=falze

The AND Logical Operator block in this subsystem has a truncated true constant
attached to its second input port. This true constant indicates that the second input
port is always true during the restricted time window for this sliced model, causing
the cruise control system not to enter the "has canceled" state.

Navigate to the equivalent AND Logical Operator block in the source system by using
slslicertrace to view the blocks connected to the second input port.

h = slslicertrace('SOURCE', ...
'sldvSliceCruiseControlHarness sliced/Model/CruiseControlMode/opMode/resumeCondition/hasCanceled/Logicl

hilite system(h)

Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

opMode.Disable
@D >

mode_prev

opMode. Enable

falze T
» true T +1 1)
yesno
h-.l B i
opMode Disable |—> N — ol gndi
Ly 77 > J’ i F
| - | OR -
Ini=ophlode Dis opMode Enable |—>
P =
771 |
Init=falze

The OR Logical Operator block in this subsystem is always true in the current
configuration. Changing the OR Logical Operator block to an AND Logical Operator
block rectifies this error.

4 Before making edits, create new copies of the cruise control model and the test
harness model.

save system('sldvSliceCruiseControl', 'sldvSliceCruiseControl fixed")
save_system('sldvSliceCruiseControlHarness', 'sldvSliceCruiseControlHarness fixed')

5 Update the model reference in the test harness to refer to the newly saved model.

set param('sldvSliceCruiseControlHarness fixed/Model',...
'ModelNameDialog', 'sldvSliceCruiseControl fixed.slx"')

6 Use the block path of the erroneous Logical Operator block to fix the error.

set param('sldvSliceCruiseControl fixed/CruiseControlMode/opMode/resumeCondition/hasCanceled/LogicOp2',
'LogicOp', 'AND")

11-95

1 1 Model Slicer

opMode.Disable
@D >

mode_prev

opMode. Enable

[
*

false > \
true - +1 1)

| \ yesno

opMode Disable |—> _ AND l
Ly 77 o T
_ ANDJ’ >
Ini=opilode. DB M ode Enable |—>

~ _..

[
*

¥

¥y
Y

77 |

Init=falze

7 Simulate the test harness for 45 seconds with the fixed model to confirm the
corrected behavior.

sim('sldvSliceCruiseControlHarness fixed')
ans =
Simulink.SimulationOutput:
tout: [4501x1 double]

SimulationMetadata: [1x1 Simulink.SimulationMetadatal]
ErrorMessage: [0x0 char]

11-96

Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

| Scope E@
File Tools View Simulation Help o
@- 0P ® = Q- FA-

operation mode

Ready T=45.000

The scope now shows that the expected operation mode is the same as the actual
operation mode.

11-97

1 1 Model Slicer

11-98

Clean Up

To complete the demo, save and close all models and remove the Model Slicer
configuration object.

save system('sldvSliceCruiseControl fixed')
save_system('sldvSliceCruiseControlHarness fixed')
close system('sldvSliceCruiseControl fixed')

close system('sldvSliceCruiseControlHarness fixed')
close system('sldvSliceCruiseControlHarness sliced')
clear obj

(I
(I

See Also

slslicer|slsliceroptions |slslicertrace

More About
. “Highlight Functional Dependencies” on page 11-2

Refine Highlighted Model Slice by Using Model Slicer Data Inspector

Refine Highlighted Model Slice by Using Model Slicer
Data Inspector

Using the Model Slicer Data Inspector, you can inspect logged signals and refine the
highlighted model slice. To refine the highlighted model slice, select the time window in
the graphical plot by using data cursors.

In the Model Slicer Data Inspector, you can:
* View signals — Inspect logged signal data after model simulation. See “Inspect

Simulation Data” (Simulink).

* Select simulation time window — Define simulation time window by using data cursors
in the graphical plot or by defining the Start and Stop time in the Inspector.

* Highlight — Compute a slice for the defined simulation time window. See “Highlight
Functional Dependencies” on page 11-2.

]

Investigate Highlighted Model Slice by Using Model Slicer
Data Inspector

This example shows how to investigate and refine the highlighted model slice by using the
Model Slicer Data Inspector.

In the fault-tolerant fuel control system, the control logic controls the fueling mode of
the engine. In this example, you slice the fuel rate control referenced model. Then,
investigate the effect of fuel rate ratio onthe Fueling mode of the engine. For
more information, see “Modeling a Fault-Tolerant Fuel Control System” (Simulink).

11-99

1 1 Model Slicer

engine_speed

Engine Speed

11-100

Step 1: Start the Model Slice Manager

To start the Model Slice Manager, open the fuel rate control model, and select Apps
> Model Verification, Validation, and Test > Model Slicer.

open_system('sldvSlicerdemo fuelsys');

Fault-Tolerant Fuel Control System

I

throttle
command

engine_gas_dynamics

el engine speed o2_out
thrattle_sw |{rad's))

i

throltle
Throttle Angle
Fault Switch

L

|
1
hrottle_Angle_Selector (bar)
#| throttle angle MAP F—
| (deg) {bar)

[_'
F Y v yy 1 Yy v

speed sw | » fuel_rate_contr
_ ! spead (1)
Engine Speed — 'g's"u fuel airffusel ratio
— (@'5)]
Fault Switch Engine_Speed_Selector lo's) {g.s:s m
Convert #] zenzorsfuel_rate —{ Convert
To/s} fuel
lg's)
BQ0_SW I » To Plant L |
ego
EGC Fault Switch » air_fuel_ratic
fuel_rate_control - T

[=h

02_Voltage_Selector fuel
map @

MAP_Selector

v

v
v

map_sw

MAP Fault Switch

v

[=h

To Controller

Copyright 1930-2017 The Math\Warks, Inc.

To select the starting point, open the fuel rate control model, and add the fuel-
rate port and the fuel mode output signal as the starting point. To add a port or a
signal as a starting point, right-click the port or signal, and select Model Slicer > Add as
Starting Point.

Step 2: Log input and output signals

a. In the Model Slice Manager dialog box, select the Simulation time window and Run
simulation.

b. In the Record simulation time window, for the Stop time, type 20.

c. Select the Log inputs and outputs of the starting points.

Refine Highlighted Model Slice by Using Model Slicer Data Inspector

d. Click OK.
Model Slice Manager sldvSlicerderno_fuelsys x
b Slice configuration list &
Mame: |untitled ;_ﬂ

Description:

Starting Points [clzar all

Signal propagation: = [Upstream i Record simulation time window: sldvSlicerdemo_fuelsys

Slice component

O 2 Please specify stop time of the simulation time window and
bl st press OK to start simulation. The model is in editable

highlight mode now.

s

Bl LPF fyel rate |
Stop time: |20

& control_logic:3

Log inputs and outputs of the starting peints

Save As lfuelsvs‘usldvﬂlicerdemu_meIsyaz.ﬁlslicex | | l:hangeJ

ok | cancel |

¥ Simulation time window

Run simulation

Use existing simulation data
F Refine Dead Logic

Export to Web Generate Slice

Slicer Active

11-101

11 Model Slicer

Step 3: Inspect signals

To open the Model Slicer Data Inspector, click Inspect Signals.

11-102

Refine Highlighted Model Slice by Using Model Slicer Data Inspector

Madel Slice Manager: sldvSlicerdermno_fuelsys

st

b Slice configuration list

Name: | untitled

Description:

Signal propagation: = upstream *

Slice component
L fuel rate control

Starting Points [clear all
B LP fuel rate

T control_logic:3

¥ Simulation time window (Enabled)

Simulation data:
sldvSlicerdemo_fuelsys.slslicex

Clear |
/ 0 to 20 seconds

Time window

| Stop |20 || Highlight

Start |0
i.Inspect Sdgnals

Actual simulation time: 0 to 20 seconds

b Refine Dead Logic

|Export to Web | | Generate Slice|

Slicer Active

11-103

1 1 Model Slicer

The logged input and output signals appear in the Model Slicer Data Inspector. When you
open the Model Slicer Data Inspector, Model Slicer saves the existing Simulation Data
Inspector session as MLDATX-file in the current working directory.

You can select the time window by dragging the data cursors to a specific location or by
specifying the Start and Stop time in the navigation pane. To highlight the model for the
defined simulation time window, Click Highlight.

To investigate the Fueling mode, open the control logic Stateflow™ chart, available
in the fuel rate control referenced model. Select the time window for 13-15 seconds
and click Highlight. For the defined simulation time window, the Low Emissions
fueling mode is active and highlighted.

MODEL SLICER DATA INSPECTOR

Start| 12 A soce s
Stop | 15

TIME WINDOW TRACE MARAGER

- umtitied ; sidv SECerdemo_tusisys W conrol_logic:3 M fusl_calc

I ! e b

T .

g

Select the data cursor for the time window 6-7.5 seconds, with @ fuel cal:1. Click
Highlight. In the control logic model, the Fuel Disabled state is highlighted. The
engine is in Shutdown mode.

11-104

See Also

Start 6 (/s |] vhoer st
Stop 7.5
NN RO, i RIRACE I MANAGER M
+- Q & R_iik|lad

- untitied : skdv Slicerdemo_fuelsys

Er

o fuel_calc:1 —
Name control_logic:3
Line —
Units

Data Type sld_FuelModes
Sample Time 0.01

Model sldvSlicerdemo
Block Name conirol_logic
Block Path sldvSlicerdemo
Port 3

Dimensions 1]

o8

032

| control_logic:3 m fuel_calc1

| DisABLED

4| DISABLED

IE 0

(=
[

4

BL1575; 10
601575

See Also

AT ETE T A TRA T TR I R TR AT R A e PR T ea T AT e e _.
Y

L)

(Fuel_Disabled R 4

en: i

fued_mode = DISABLED: i

i

'

max_speed)] H
Owarspaed '

i

i

|

i

H

[in{Speed.normal) & i

85 _ispead < (max_speed - hys)) H

L)

H

Multi) H
2 a

. {
“ [in{F adl Muiti)] 5
b i

adl M) i
\ i

* i

(Fail Multh, i
. i

o H

. J i

-~

“Highlight Functional Dependencies” on page 11-2 | “Refine Highlighted Model” on page

11-13

11-105

1 1 Model Slicer

Debug Slice Simulation by Using Fast Restart Mode

11-106

Perform multiple slicer simulations and streamline model debugging workflows by using
Model Slicer in fast restart mode. For more information, see “Get Started with Fast
Restart” (Simulink).

If you enable fast restart mode, you can:

Perform multiple slicer simulations efficiently with different inputs, without
recompiling the model.

Debug a simulation by stepping through the major time steps of a simulation and
inspecting how a slice changes. For more information, see “Use Simulation Stepper”
(Simulink).

Simulate and Debug a Test Case in a Model Slice

This example shows how the fast restart mode performs slicer simulations with different
test case inputs, without recompiling the model. You can simulate a sliced harness model
with a test case input and highlight the dependency analysis in the model.

Analyze the highlighted slice by stepping through the time steps. You use the simulation
stepper to analyze how the slice changes at each time step.

1

Open the sldvdemo cruise control model.

open_system('sldvdemo cruise control');

Set sldvoptions parameters and analyze the model by using the specified options.

opts = sldvoptions;

opts.Mode = 'TestGeneration'; % Perform test-generation analysis
opts.ModelCoverageObjectives = 'MCDC'; % Specify type of model coverage
opts.SaveHarnessModel = 'on'; % Save harness as model file

[status, files] = sldvrun('sldvdemo cruise control', opts);

After the analysis, the software opens a harness model

sldvdemo cruise control harness and saves it in the default location
<current folder>\sldv_output\sldvdemo cruise control

\sldvdemo cruise control harness.slx. For more information, see “Simulink
Design Verifier Harness Models” (Simulink Design Verifier).

Debug Slice Simulation by Using Fast Restart Mode

-T3-8 <«

sldvdemo_cruise_control_harness

E I EEe e

= E OB

b2

e -E-ed® b

|i|sld'.rdem{:n_cruise_cuntrol_harness b

Text

Test Case Explanation

Size-Type

Test Case 4 anable ————®

brake —————

/\ -EE‘i—.'
1L

anabla

brake

sat

inc

dec

[l
Bl =ad

throt

target

—()
throt

| 8

Test Unit (copied from sldvdeme_cruise_contral)

To enable the fast restart mode, click Enable Fast Restart button

On the Apps tab, under Model Verification, Validation, and Test gallery, click
Model Slicer. Model Slicer compiles the model.

Optionally, you can enable fast restart after opening the Model Slice Manager. Select

Simulation time window and click the run simulation button . To enable fast
restart, in the Record simulation time window, click the here link.

11-107

1 1 Model Slicer

Record simulation time window: sldvdeme_cruise_contral_.. =

Flease specify stop time of the simulation time window and
press OK to start simulation.

The model is in editable highlight mode now. Consider turning
on Fast Restart for simulation based workflows. Click here to
enable Fast Restart.

Stop time: |0.07 |

[] Log inputs and outputs of the starting points

Save As |5Id\.rdemu_crui&e_contml_harn955.5I5Iicex| Change

cancl

5 To add Starting Points, in the Model Slice Manager, click Add all outports..

The throt and target outports are added as the Starting Points.
6 You can simulate a test case and analyze the highlighted dependencies in the slice.

a In the Signal Builder block, select Test Case 4.

To simulate the test case, click Start simulation button,

£ Y

Optionally, you can simulate the model by using the Run button \&y in the
Simulink editor. You can also simulate by using the Simulation time window in

the Model Slice Manager.

The slice shows the highlighted dependencies for the Test Case 4 inputs.

11-108

Debug Slice Simulation by Using Fast Restart Mode

Active Group: | Test Case 4 v|| @ [a]*]

';_enahle"’ & & & % ©
n i i i i i i]
1~
ﬁl _hrake i i i i i i
1 ——————————————
0.5 i
oL set |
1
0.5
pL_inc .
1+
0.5 L ¢]
0l— .
100
50
u S Fmd i i i i ']
0 0.0 Q.02 0.03 0.04 005 0.06 007
Time (sec)

< [Pa| Test Unit (copied from sidvdemo_cruise_control) # [Pa|Controlier # -

11 Model Slicer

Active Group: | Test Case 4 v @ [a]+]

§_enable ? T
o brake— L | L | |]
ﬂém : : : : —

1

P

L
- <
L
-

u.st ;
oL _inc [|
9 . .
u.5I:_.-|¢.-. ! ! !
o[_dec ,
100
D SFde i 1 i i I
0 001 002 003 004 005 0.06 0.07
Time (sec)
<¢ [Pa| Test Unit (copied from sldvdemo_cruise_control) b [P Controller b -

11-110

Debug Slice Simulation by Using Fast Restart Mode

You can simulate a slice for different test case inputs and analyze the
dependency analysis.

7 Debug a slicer simulation by using a simulation stepper. For more information see,
“Simulation Stepper Access” (Simulink).

Stepping Step
Options Forward

\l./

a To debug the simulation for the test case, in the Simulink Editor for the
sldvdemo cruise control harness model, click Step Forward button. You
can view the signal values and the highlighted slice at each time step. For more

information, see “Simulation Stepping Options” (Simulink). The signal values and
the dependencies at T=0.010 appears.

11-111

11 Model Slicer

11-112

E-m-EH e ¢ BB@-E- ¢ @® » -
Controller
< [Pa| Test Unit (copied from sidvdemo_cruise_control) B [Ba|Controller b hd

OEEYE S| e

Paused 80% T=0.010* B raused | FixedStepDiscrete :

b To debug the slice at T=0.030, step forward and view the signal values and the
highlighted slice.

Debug Slice Simulation by Using Fast Restart Mode

E-m-EH e ¢ BB@-E- ¢ @® » -
Controller
< [Pa| Test Unit (copied from sidvdemo_cruise_control) B [Ba|Controller b hd

OEEYE S| e

(G
=
o

([|
FixedStepDiscrete .

Faused 80% T=0.030*

8 To complete the simulation stepping, click the Run button.

11-113

1 1 Model Slicer

See Also

More About

. “Highlight Functional Dependencies” on page 11-2
. “Simulation Stepper” (Simulink)
. “Get Started with Fast Restart” (Simulink)

11-114

Isolate Referenced Model for Functional Testing

Isolate Referenced Model for Functional Testing

To functionally test a referenced model, you can create a slice of a referenced model
treating it as an open-loop model. You can isolate the simplified open-loop referenced
model with the inputs generated by simulating the close-loop system.

This example shows how to slice the referenced model controller of a fault-tolerant fuel
control system for functional testing. To create a simplified open-loop referenced model
for debugging and refinement, you generate a slice of the referenced controller.

Step 1: Open the Model

The fault-tolerant fuel control system model contains a referenced model controller
fuel rate control.

open_system('sldvSlicerdemo fuelsys');

Fault-Tolerant Fuel Control System

I

throttle
command

engine_gas_dynamics

X V)
engine speed 02_out
|irad/s))

{radis}

thrattie_sw

Throttle Angle
Fault Switch

throltle
Ly

!
1
Throtile_Angle_Selector

engine_speed

Engine Spead

#| throttle angle MAP F—
{deg) {bar)

- fuel_rate_contr

speed_sw

Engine Speed
Fault Switch

|

! spaad
Ly
Engine_Speed_Selector

P fuel airffuel ratio
el [T} m

la's)
¥ sensarsfuel_rate F—®|Convert
lg's)

Convert

fuel

To Plant

ego_Sw

EGC Fault Switch

y¥yYy [Yy [¥y v

ego

H

02 _\oltage_Selector

v

air_fuel_ratio

fuel

fuel_rata_control

map_sw

MAF Fault Switch

v

map

[=h

.

MAP_Selector

: =

To Controller

Copyright 1930-2017 The Math\Warks, Inc.

11-115

1 1 Model Slicer

11-116

Step 2: Slice the Referenced Model

To analyze the fuel rate control referenced model, you slice it to create a standalone
open-loop model. To open the Model Slice Manager, select Apps > Model Verification,
Validation, and Test > Model Slicer, or right-click the fuel rate control model
and select Model Slicer > Slice component. When you open the Model Slice Manager,
the Model Slicer compiles the model. You then configure the model slice properties.

Note: The simulation mode of the sldvSlicerdemo fuelsys model is Accelerator
mode. When you slice the referenced model, the software configures the simulation mode
to Normal mode and sets it back to its original simulation mode while exiting the Model
Slicer.

Step 3: Select Starting Point

Open the fuel rate control model, right-click the fuel-rate port, and select Model
Slicer > Add as starting point. The Model Slicer highlights the upstream constructs
that affect the fuel rate.

Isolate Referenced Model for Functional Testing

Step 4: Generate Slice

a. In the Model Slice Manager dialog box, select the Simulation time window.
b. Click Run simulation.
c. For the Stop time, enter 20. Click OK.

d. Click Generate Slice. The software simulates the sliced referenced model by using the
inputs of the close-loop sldvSlicerdemo fuelsys model.

11-117

1 1 Model Slicer

b Slice configuration list

Maodel Slice Manager: sldvSlicerderno_fuelsys

Name: |untitled

Description:

Slice component
L fuel rate control

Starting Points [clear all
E LPfuel rate

¥ Simulation time window

Run simulation

b Refine Dead Logic

lEii 1 écti*.re

Signal propagation: #= |upstream

-

Record simulation time window: sldvSlicerdemo_fuelsys

Please specify stop time of the simulation time window and
press OK to start simulation. The model is in editable highlight

maode now.

Stop time: |20 |
Log inputs and outputs of the starting points

Save As }rm_fuelsvs\sldvslicerdemu_fueIsyﬁ.slslicex| | Change |

[ok || cancel

Use existing simulation data

Export to Web Generate Slice

Isolate Referenced Model for Functional Testing

For the sliced model, in the Signal Builder window, one test case is displayed that
represents the signals input to the referenced model for simulation time 0-20 seconds.

Test Cass 1

f/“‘m
L

sensore.throtile

EEI¥S0ME. BpsSedl

SENEOrs. &gl

ESIE0rE. map

{2=g)

{rad/s)

bar)

Inputs

Size-Type

SENE0rE

fual_rate
o=}

fusl_rate

Tast Unit

11-119

1 1 Model Slicer

4 Signal Builder (sldvSlicerdemo_fuelsys_slice10/Inputs) - O X
File Edit Group Signal Axes Help kS
GH| SRR |o o[~ TL[ETFREE > 0 o=y hH|Y

Active Group: | Test Case 1 v | e = | m

g sensors.throttle
50
0
301 r
sensors.speed
300
299 1 1 1 1 1 1 1 1 1]
1
Sensors.ego
0.5
18 = 1 1
1k
sensors.map
0.5
1 1 1 1
0 2 4 6 8

Hame: sensors.throttie

Index: |1 ~

Click to select, Shift+click to add sensors.throttle (#1) [YMin ¥YMax]

11-120

Analyze the Dead Logic

Analyze the Dead Logic

This example shows how to refine the model for dead logic. The

sldvSlicerdemo dead logic model consists of dead logic paths that you refine for
dependency analysis.

1. Open the sldvSlicerdemo dead logic model, and then select Analysis > Model
Slicer.

open_system('sldvSlicerdemo dead logic');

11-121

1 1 Model Slicer

Simulink Design Verifier
Cruise Control Test Generation

L1 F # enable
enable
[2 } P brake throt = 1 }
brake throt
1 | st
sel [0 100]
s) ——{ewees
speed Actual s
(3) >inc targetf—————» (2)
inc target
! 4 " | dec
dec

Controller

This example shows how to refine the model for dead logic. The model consists of a Controller
subsystem that has a set value equal to 1. Dead logic refinement analyszis identifies the dead logic
in the model. The inactive elements are removed from the slice.

Toggle Constraint

Copyright 2006-2018 The MathWorks, Inc.

Open the Controller subsystem and add the outport throt as the starting point.

11-122

Analyze the Dead Logic

The Model Slicer highlights the upstream dependency of the throt outport.

2. In the Model Slice Manager, select Refine Dead Logic.
3. Click Get Dead Logic Data.

11-123

1 1 Model Slicer

Madel Slice Manager: sldvSlicerdernc_dead_legic et

b Slice configuration list :«’-?j-_ @ ®

MName: | untitled | _]

Description:

Sigmal propagation: #= |upstream 57

Starting Points [clear all]
B LF throt

b Simulation time window
¥ Refine Dead Logic
Get Dead Logic Data

Export to Web | | Generate Slice

Slicer Active

4. Specify the Analysis time and run the analysis. You can import existing dead logic
results from the sldvData file or load existing . slslicex data for analysis. For more
information, see “Refine Highlighted Model by Using Existing .slslicex or Dead Logic
Results” on page 11-80.

11-124

Analyze the Dead Logic

Refine Dead Logic ey
*al g

Generate results

Run analysis

Analysis time: 300 r@ |

Import SLDV data

Browss for SLDV data file [E|
Save As |‘\5Idv5Iicerdemn_dead_lagic.ﬁlslicex | | Change |
Load results
Browse for existing dead logic results _'E_IT_l
| Cancel |

11-125

11 Model Slicer

As the set input is equal to true, the False input to switch is removed for dependency
analysis. Similarly, the output of block OR is always true and removed from the model
slice.

11-126

Investigate Highlighted Model Slice by Using Model Slicer Data Inspector

Investigate Highlighted Model Slice by Using Model
Slicer Data Inspector

engine_speed

Engine Speed

This example shows how to investigate and refine the highlighted model slice by using the
Model Slicer Data Inspector.

In the fault-tolerant fuel control system, the control logic controls the fueling mode of
the engine. In this example, you slice the fuel rate control referenced model. Then,
investigate the effect of fuel rate ratio onthe Fueling mode of the engine. For
more information, see “Modeling a Fault-Tolerant Fuel Control System” (Simulink).

Step 1: Start the Model Slice Manager

To start the Model Slice Manager, open the fuel rate control model, and select Apps
> Model Verification, Validation, and Test > Model Slicer.

open_system('sldvSlicerdemo fuelsys');

Fault-Tolerant Fuel Control System

I

throltle
4

|
1
Throttle_Angle_Selector

> fuel_rate_contr

|
1 spaad
Ly

Engine_Speed_Selector

engine_gas_dynamics

—#lengine speed o2_out
=N iradis) v)

—] throttle angle MAP F——
1980 (deg) {bar)

la's)
Convert #] zenzorsfuel_rate —"

{a's)

Convert

et fual airffuel ratio
| @'=) m

throttle
command >
thrattle_sw >
Throttle Angle
Fault Switch
i
speed_sw >
Engine Speed
Fault Switch
L
ego_swW L
i

EGC Fault Switch

|
1 ego

H

02 _\oltage_Selector

v

map_sw

v

fuel_rate_control

i

MAF Fault Switch

mag

[=h

-
P

MAP_Selector

To Controller

To Plant

fuel

air_fuel_ratio

=

Copyright 1930-2017 The Math\Warks, Inc.

11-127

1 1 Model Slicer

11-128

To select the starting point, open the fuel rate control model, and add the fuel-
rate port and the fuel mode output signal as the starting point. To add a port or a
signal as a starting point, right-click the port or signal, and select Model Slicer > Add as
Starting Point.

Step 2: Log input and output signals

a. In the Model Slice Manager dialog box, select the Simulation time window and Run
simulation.

b. In the Record simulation time window, for the Stop time, type 20.
c. Select the Log inputs and outputs of the starting points.
d. Click OK.

Investigate Highlighted Model Slice by Using Model Slicer Data Inspector

Model Slice Manager: sldvSlicerderno_fuelsys bt
b Slice configuration list &
MName: |untitled ;_ﬂ

Description:

Signal propagation: = |upstream i Record simulaticn time window: sldvSlicerdemo_fuelsys x

Slice component
b e Please specify stop time of the simulation time window and
bl et press OK to start simulation. The model is in editable

Starting Points [clzar all] highlight mode now.
Bl LPF fyel rate

" control_logic:3

Stop time: |20 |
Log inputs and outputs of the starting peints
Save As lfuelsvslsldvﬂlicerdemc_helsysz.slslicex | | Changﬂ

[ok | cancel |

¥ Simulation time window

Run simulation
Use existing simulation data
F Refine Dead Logic

Export to Web Generate Slice

Slicer Active

11-129

11 Model Slicer

Step 3: Inspect signals

To open the Model Slicer Data Inspector, click Inspect Signals.

11-130

Investigate Highlighted Model Slice by Using Model Slicer Data Inspector

Madel Slice Manager: sldvSlicerdermno_fuelsys

st

b Slice configuration list

Name: | untitled

Description:

Signal propagation: = upstream *

Slice component
L fuel rate control

Starting Points [clear all
B LP fuel rate

T control_logic:3

¥ Simulation time window (Enabled)

Simulation data:
sldvSlicerdemo_fuelsys.slslicex

Clear |
/ 0 to 20 seconds

Time window

| Stop |20 || Highlight

Start |0
i.Inspect Sdgnals

Actual simulation time: 0 to 20 seconds

b Refine Dead Logic

|Export to Web | | Generate Slice|

Slicer Active

11-131

1 1 Model Slicer

The logged input and output signals appear in the Model Slicer Data Inspector. When you
open the Model Slicer Data Inspector, Model Slicer saves the existing Simulation Data
Inspector session as MLDATX-file in the current working directory.

You can select the time window by dragging the data cursors to a specific location or by
specifying the Start and Stop time in the navigation pane. To highlight the model for the
defined simulation time window, Click Highlight.

To investigate the Fueling mode, open the control logic Stateflow™ chart, available
in the fuel rate control referenced model. Select the time window for 13-15 seconds
and click Highlight. For the defined simulation time window, the Low Emissions
fueling mode is active and highlighted.

MODEL SLICER DATA INSPECTOR

Start| 12 A soce s
Stop | 15

TIME WINDOW TRACE MARAGER

- umtitied ; sidv SECerdemo_tusisys W conrol_logic:3 M fusl_calc

I ! e b

T .

g

Select the data cursor for the time window 6-7.5 seconds, with @ fuel cal:1. Click
Highlight. In the control logic model, the Fuel Disabled state is highlighted. The
engine is in Shutdown mode.

11-132

Investigate Highlighted Model Slice by Using Model Slicer Data Inspector

Filter Signals |
e - n - Qe alilnlad
~ untitied : sidv Slicerdemo_fuelsys ' | control_logic:3 m fuel_calc1

:
i

[oisheLen.

Name control_logic:3 i
Line —

Units

Data Type sid_FuelModes |
SampleTme 0.1 |
Model sidvSlicerdemo. . |
BlockName |conoLiogic |
BlockPath sidvSiicerdemo. . |
Port 3 |
Dimensions [1] |

11-133

