
Simulink® Check™
User's Guide

R2019b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Check™ User's Guide
© COPYRIGHT 2004–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
September 2017 Online only New for Version 4.0 (Release 2017b)
March 2018 Online only Revised for Version 4.1 (Release 2018a)
September 2018 Online only Revised for Version 4.2 (Release 2018b)
March 2019 Online only Revised for Version 4.3 (Release 2019a)
September 2019 Online only Revised for Version 4.4 (Release 2019b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Getting Started
1

Simulink Check Product Description . 1-2
Key Features . 1-2

Check for Standards Compliance in Your Model 1-3
Detect and Fix Model Advisor Check Violations by Using Edit-

Time Checking . 1-3
Detect Model Advisor Check Violations Interactively 1-4

Collect Model Metric Data by Using the Metrics Dashboard
. 1-8

Analyze Metric Data . 1-8
Drill-In to Explore Metric Data . 1-10
Refactor Model Based on Metric Data 1-11

Refactor Models with the Clone Detector App and Model
Transformer Tool . 1-13

Identify and Replace Clones with Links to Library Blocks . . . 1-13
Replace Qualifying Modeling Patterns with Variant Blocks . . 1-15

Create a Simplified, Standalone Model Using the Model Slicer
Tool . 1-19

Verification and Validation
2

Test Model Against Requirements and Report Results 2-2
Requirements – Test Traceability Overview 2-2
Display the Requirements . 2-3
Link Requirements to Tests . 2-4

iii

Contents

Run the Test . 2-5
Report the Results . 2-6

Analyze a Model for Standards Compliance and Design Errors
. 2-8

Standards and Analysis Overview . 2-8
Check Model for Style Guideline Violations and Design Errors

. 2-8

Perform Functional Testing and Analyze Test Coverage 2-11
Incrementally Increase Test Coverage Using Test Case

Generation . 2-11

Analyze Code and Test Software-in-the-Loop 2-14
Code Analysis and Testing Software-in-the-Loop Overview . . 2-14
Analyze Code for Defects, Metrics, and MISRA C:2012 2-14

Checking Systems Interactively
3

Check Model Compliance by Using the Model Advisor 3-2
Model Advisor Overview . 3-2
Run Model Advisor Checks and Review Results 3-5
Check Your Model by Using Edit Time Checks 3-8
View and Configure the Model Advisor Edit-Time Checks . . . 3-11

Exclude Blocks From the Model Advisor Check Analysis 3-14
Model Advisor Exclusion Overview . 3-14
Save Model Advisor Exclusions in a Model File 3-15
Save Model Advisor Exclusions in Exclusion File 3-15
Create Model Advisor Exclusions . 3-16
Review Model Advisor Exclusions . 3-17
Manage Exclusions . 3-18
Exclude Blocks from Edit Time Checking 3-20
Limit Model Checks by Excluding Gain and Outport Blocks . . 3-21

Transform Model to Variant System . 3-26
Example Model . 3-26
Perform Variant Transform on Example Model 3-28
Model Transformation Limitations . 3-30

iv Contents

Enable Component Reuse by Using Clone Detection 3-32
Exact Clones and Similar Clones . 3-32
Identify Exact and Similar Clones . 3-32
Replace Clones . 3-38
Identifying and Replacing Clones in Model Libraries 3-39
Check the Equivalency of the Model 3-39

Improve Model Readability by Eliminating Local Data Store
Blocks . 3-41

Example Model . 3-41
Replace Data Store Blocks . 3-43
Limitations . 3-45

Improve Efficiency of Simulation by Optimizing Prelookup
Operation of Lookup Table Blocks . 3-46

Example Model . 3-46
Merge Prelookup Operation . 3-47
Conditions and Limitations . 3-50

Model Checks for DO-178C/DO-331 Standard Compliance . . 3-52
Model Checks for High Integrity Systems Modeling 3-53

Model Checks for High Integrity Systems Modeling 3-62
High Integrity Systems Modeling Checks 3-54

Model Checks for IEC 61508, IEC 62304, ISO 26262, and EN
50128 Standard Compliance . 3-70

Model Checks for High Integrity Systems Modeling 3-71

Model Checks for MathWorks Automotive Advisory Board
(MAAB) Guideline Compliance . 3-79

Model Checks for Japan MATLAB Automotive Advisory Board
(JMAAB) Guideline Compliance . 3-85

Model Checks for MISRA C:2012 Compliance 3-102

Model Checks for Secure Coding (CERT C, CWE, and ISO/IEC
TS 17961 Standards) . 3-103

Model Checks for Requirements Links 3-104

v

Generate Model Advisor Reports . 3-105
Generate Results Report When Executing Model Advisor Checks

. 3-105
Generate Results Report After Executing Model Advisor Checks

. 3-105
Modify Template for Model Advisor Check Results Report . 3-106

Check Systems Programmatically
4

Checking Systems Programmatically . 4-2

Create a Function for Checking Multiple Systems 4-3

Create a Function for Checking Multiple Systems in Parallel
. 4-5

Archive and View Results . 4-7
Archive Results . 4-7
View Results in Command Window . 4-7
View Results in Model Advisor Command-Line Summary Report

. 4-8
View Results in Model Advisor GUI . 4-9
View Model Advisor Report . 4-10

Archive and View Model Advisor Run Results 4-11

Model Metrics
5

Collect and Explore Metric Data by Using the Metrics
Dashboard . 5-2

Metrics Dashboard Widgets . 5-3
Size . 5-5
Modeling Guideline Compliance . 5-6
Architecture . 5-7
Metric Thresholds . 5-8

vi Contents

Dashboard Limitations . 5-9

Collect Model Metrics Using the Model Advisor 5-11

Create a Custom Model Metric for Nonvirtual Block Count . 5-13

Collect Model Metrics Programmatically 5-18

Model Metric Data Aggregation . 5-22
How Model Metric Aggregation Works 5-22
Access Aggregated Metric Data . 5-24

Identify Modeling Clones with the Metrics Dashboard 5-27

Collect Compliance Data and Explore Results in the Model
Advisor . 5-30

Collect Metric Data Programmatically and View Data Through
the Metrics Dashboard . 5-35

Fix Metric Threshold Violations in a Continuous Integration
Systems Workflow . 5-39

Project Setup . 5-40
GitLab Setup . 5-42
Jenkins Setup . 5-42
Continuous Integration Workflow . 5-43

Customize Metrics Dashboard Layout and Functionality 5-47

Overview of Customizing the Model Advisor
6

Model Advisor Customization . 6-2
Requirements for Customizing the Model Advisor 6-2

vii

Create Model Advisor Checks
7

Create Model Advisor Checks Workflow 7-2

Customization File Overview . 7-3

Common Utilities for Creating Checks 7-5

Create and Add Custom Checks - Basic Examples 7-6
Add Custom Check to by Product Folder 7-6
Create Customized Pass/Fail Check . 7-7
Create Customized Pass/Fail Check with Fix Action 7-10
Create Customized Pass/Fail Check with Detailed Result

Collections . 7-14

Create Check for Model Configuration Parameters 7-21
Create a Data File for a Configuration Parameter Check 7-21
Create Check for Diagnostics Pane Model Configuration

Parameters . 7-23
Data File for Configuration Parameter Check 7-26

Define Checks for Supported or Unsupported Blocks and
Parameters . 7-35

Example . 7-35
Create Block Parameter Constraints 7-36
Create Model Advisor Checks from Constraints 7-39

Register Checks . 7-42
Create sl_customization Function . 7-42
Register Checks . 7-42

Define Startup and Post-Execution Actions Using Process
Callback Functions . 7-44

Process Callback Function Arguments 7-44
Process Callback Function . 7-45
Tips for Using the Process Callback Function in a

sl_customization File . 7-46

Define Custom Checks . 7-47
About Custom Checks . 7-47
Contents of Check Definitions . 7-47

viii Contents

Display and Enable Checks . 7-48
Define Where Custom Checks Appear 7-49
Check Definition Function . 7-50
Define Check Input Parameters . 7-51
Define Model Advisor Result Explorer Views 7-52
Define Check Actions . 7-53

Create Callback Functions and Results 7-56
About Callback Functions . 7-56
Informational Check Callback Function 7-57
Simple Check Callback Function . 7-58
Detailed Check Callback Function . 7-59
Check Callback Function with Hyperlinked Results 7-60
Check Callback Function for Detailed Result Collections 7-63
Action Callback Function . 7-65
Check With Subchecks and Actions . 7-66
Basic Check with Pass/Fail Status . 7-68

Define the Compile Option for Custom Checks 7-72
Checks for Models That Are Not Compiled by the Model Advisor

. 7-72
Checks That Require the Model to be Compiled and Simulated

by the Model Advisor . 7-73
Checks That Evaluate Code Generation Readiness of the Model

. 7-74
Create Custom Check to Evaluate Active and Inactive Variant

Paths from a Model . 7-76

Exclude Blocks From Custom Checks 7-83

Format Check Results . 7-86
Format Results . 7-86
Format Text . 7-86
Format Lists . 7-87
Format Tables . 7-87
Format Paragraphs . 7-89
Formatted Output . 7-89
Format Linebreaks . 7-90
Format Images . 7-90

ix

Create Custom Configurations by Organizing Checks
and Folders

8
Create Custom Configurations . 8-2

Create Configurations by Organizing Checks and Folders 8-3

Create Procedural-Based Configurations 8-4

Organize Checks and Folders Using the Model Advisor
Configuration Editor . 8-5

Overview of the Model Advisor Configuration Editor 8-5
Open the Model Advisor Configuration Editor 8-9
Organize Checks and Folders Using the Model Advisor
Configuration Editor . 8-10

Organize Customization File Checks and Folders 8-12
Customization File Overview . 8-12
Register Tasks and Folders . 8-13
Define Custom Tasks . 8-14
Define Custom Folders . 8-15
Customization Example . 8-17

Verify and Use Custom Configurations 8-18
Update the Environment to Include Your sl_customization File

. 8-18
Verify Custom Configurations . 8-18

Customize Model Advisor Check for Nondefault Block
Attributes . 8-20

Automatically Fix Display of Nondefault Block Parameters . 8-21

x Contents

Create Procedural-Based Model Advisor
Configurations

9
Create Procedures . 9-2

What Is a Procedure? . 9-2
Create Procedures Using the Procedures API 9-2
Define Procedures . 9-2

Create Procedural-Based Configurations 9-5
Overview of Procedural-Based Configurations 9-5
Create a Procedural-Based Configuration 9-6

Add Checks and Tasks to the Model Advisor 9-9

Deploy Custom Configurations
10

Overview of Deploying Custom Configurations 10-2
About Deploying Custom Configurations 10-2
Deploying Custom Configurations Workflow 10-2

How to Deploy Custom Configurations 10-3

Manually Load and Set the Default Configuration 10-4

Model Slicer
11

Highlight Functional Dependencies . 11-2

Highlight Dependencies for Multiple Instance Reference
Models . 11-9

Refine Highlighted Model . 11-13
Define a Simulation Time Window 11-13

xi

Exclude Blocks . 11-19
Exclude Inputs of a Switch Block . 11-22

Refine Dead Logic for Dependency Analysis 11-26
Analyze the Dead Logic . 11-26

Create a Simplified Standalone Model 11-33

Highlight Active Time Intervals by Using Activity-Based Time
Slicing . 11-34

Highlighting the Active Time Intervals of a Stateflow State or
Transition . 11-34

Activity-Based Time Slicing Limitations and Considerations
. 11-42

Stateflow State and Transition Activity 11-42

Simplify a Standalone Model by Inlining Content 11-43

Workflow for Dependency Analysis . 11-47
Dependency Analysis Workflow . 11-47
Dependency Analysis Objectives . 11-48

Configure Model Highlight and Sliced Models 11-50
Model Slice Manager . 11-50
Model Slicer Options . 11-50
Storage Options . 11-50
Refresh Highlighting Automatically 11-51
Sliced Model Options . 11-51
Trivial Subsystems . 11-52
Inline Content Options . 11-52

Model Slicer Considerations and Limitations 11-54
Model Compilation . 11-54
Model Highlighting and Model Editing 11-54
Standalone Sliced Model Generation 11-54
Sliced Model Considerations . 11-55
Port Attribute Considerations . 11-55
Simulation Time Window Considerations 11-56
Simulation-based Sliced Model Simplifications 11-57
Starting Points Not Supported . 11-58
Model Slicer Support Limitations for Simulink Software

Features . 11-58
Model Slicer Support Limitations for Simulation Stepper . . 11-59

xii Contents

Model Slicer Support Limitations for Simulink Blocks 11-59
Model Slicer Support Limitations for Stateflow 11-60

Using Model Slicer with Stateflow . 11-63
Model Slicer Highlighting Behavior for Stateflow Elements

. 11-63
Using Model Slicer with Stateflow State Transition Tables . 11-64
Support Limitations for Using Model Slicer with Stateflow

. 11-64

Isolating Dependencies of an Actuator Subsystem 11-65
Choose Starting Points and Direction 11-65
View Precedents and Generate Model Slice 11-67

Isolate Model Components for Functional Testing 11-70
Isolate Subsystems for Functional Testing 11-70
Isolate Referenced Model for Functional Testing 11-74

Refine Highlighted Model by Using Existing .slslicex or Dead
Logic Results . 11-80

Simplification of Variant Systems . 11-83
Use the Variant Reducer to Simplify Variant Systems 11-83
Use Model Slicer to Simplify Variant Systems 11-83

Programmatically Resolve Unexpected Behavior in a Model
with Model Slicer . 11-85

Prerequisites . 11-85
Find the Area of the Model Responsible for Unexpected

Behavior . 11-85
Isolate the Area of the Model Responsible for Unexpected

Behavior . 11-89
Investigate the Sliced Model and Debug the Source Model

. 11-93
Clean Up . 11-98

Refine Highlighted Model Slice by Using Model Slicer Data
Inspector . 11-99

Investigate Highlighted Model Slice by Using Model Slicer Data
Inspector . 11-99

Debug Slice Simulation by Using Fast Restart Mode 11-106
Simulate and Debug a Test Case in a Model Slice 11-106

xiii

Isolate Referenced Model for Functional Testing 11-115

Analyze the Dead Logic . 11-121

Investigate Highlighted Model Slice by Using Model Slicer
Data Inspector . 11-127

xiv Contents

Getting Started

• “Simulink Check Product Description” on page 1-2
• “Check for Standards Compliance in Your Model” on page 1-3
• “Collect Model Metric Data by Using the Metrics Dashboard” on page 1-8
• “Refactor Models with the Clone Detector App and Model Transformer Tool”

on page 1-13
• “Create a Simplified, Standalone Model Using the Model Slicer Tool” on page 1-19

1

Simulink Check Product Description
Verify compliance with style guidelines and modeling standards

Simulink Check provides industry-recognized checks and metrics that identify standard
and guideline violations during development. Supported high-integrity software
development standards include DO-178, ISO 26262, IEC 61508, IEC 62304, and
MathWorks Automotive Advisory Board (MAAB) Style Guidelines. Edit-time checks
identify compliance issues as you edit. You can create custom checks to comply with your
own standards or guidelines.

Simulink Check provides metrics such as size and complexity that you can use to evaluate
your model’s architecture and compliance to standards. A consolidated metrics dashboard
lets you assess design status and quality. Automatic model refactoring lets you replace
duplicate design elements, reduce design complexity, and identify reusable content. The
Model Slicer tool isolates problematic behavior in a model and generates a simplified
model for debugging.

Support for industry standards is available through IEC Certification Kit (for ISO 26262
and IEC 61508) and DO Qualification Kit (for DO-178).

Key Features
• Edit-time checking to identify model guideline violations
• Compliance checking for MAAB style guidelines and high-integrity system design

guidelines (DO-178, ISO 26262, IEC 61508, IEC 62304)
• Compliance checking for secure coding standards (CERT C, CWE, ISO/IEC TS 17961)
• Custom check authoring with Model Advisor Configuration Editor
• Metrics for computing model size, complexity, and readability
• Dashboard providing consolidated view of metrics and project status
• Model refactoring with clone detection and model transformations

1 Getting Started

1-2

Check for Standards Compliance in Your Model
With Simulink Check, the Model Advisor can check for model conditions that cause
generation of inefficient code or code unsuitable for safety-critical applications.

The Model Advisor produces a report that lists the suboptimal conditions or settings that
it finds. The Model Advisor proposes better model configuration settings.

Detect and Fix Model Advisor Check Violations by Using Edit-
Time Checking
In the Model Advisor, you can check that your model complies with certain guidelines
while you edit.

1 Open model sf_boiler.
2 To use edit-time checking, on the Modeling tab, select Model Advisor > Edit-Time

Checks.

The highlighted blocks and subsystems indicate a compliance issues. Place your
cursor over the highlighted block and click the warning icon. A dialog box provides a
description of the warning. For detailed documentation on the check that detected
the issue, click the question mark. In this case, the warning indicates that the
subsystem block name contains incorrect characters.

3 Open the Bang-Bang Controller chart by double-clicking it. The Model Advisor
highlights multiple states. Place your cursor over the warning of the Off state to
review the issue.

 Check for Standards Compliance in Your Model

1-3

4 Select the warning. The Model Advisor indicates that there must be a new line after
en: to comply with the MAAB guidelines. In your model, place your cursor after en:
and press Enter. A new line is added and the warning is cleared.

Detect Model Advisor Check Violations Interactively
You can interactively check that your model complies with DO-178C/DO-331 guidelines by
using the Model Advisor.

1 Open model sf_boiler.
2 On the Modeling tab, select Model Advisor.
3 Select the top-level model sf_boiler from the System Hierarchy and click OK.

1 Getting Started

1-4

4 In the left pane, in the By Product > Simulink Check > Modeling Standards
>DO-178C/DO-331 Checks folder, select:

• Check safety-related diagnostic settings for solvers
• Check safety-related diagnostic settings for sample time
• Check safety-related optimization settings for logic signals

5 Right-click the DO-178C/DO-331 Checks node, and then select Run Selected
Checks.

Update Model to Reach Compliance

1 To review the configuration parameters that are not set to the recommended values,
click Check safety-related optimization settings for logical signals.

 Check for Standards Compliance in Your Model

1-5

2 To update the optimization parameters to the recommended values, click the Modify
Settings button in the Action section of the right pane. The Model Advisor updates
the parameters to the recommended value and details the results.

3 Repeat steps 1 and 2 for the other two checks: Check safety-related diagnostic
settings for solvers and Check safety-related diagnostic settings for sample
time.

4 To verify that your model now passes, rerun the selected checks.

1 Getting Started

1-6

Display an HTML Report of Check Results

To generate a results report of the Simulink Check checks, select the DO-178C/DO-331
Checks node, and then, in the right pane click Generate Report.

See Also

More About
• “Check Model Compliance by Using the Model Advisor” on page 3-2
• “Create Model Advisor Checks Workflow” on page 7-2

 See Also

1-7

Collect Model Metric Data by Using the Metrics
Dashboard

To collect model metric data and assess the design status and quality of your model, use
the Metrics Dashboard. The Metrics Dashboard provides a view into the size,
architecture, and guideline compliance for your model.

1 Open the model by typing sldemo_fuelsys.
2 On the Apps tab, open the Metrics Dashboard by clicking Metrics Dashboard.
3 To collect metric data for this model, click the All Metrics icon.

Analyze Metric Data
The Metrics Dashboard contains widgets that provide visualization of metric data in these
categories: size, modeling guideline compliance, and architecture. By default, some
widgets contain metric threshold values. These values specify whether your metric data is
compliant (appears green in the widget) or produces a warning (appears yellow in the
widget). Metrics that do not have threshold values appear blue in the widget. You can
specify noncompliant ranges and apply other Metrics Dashboard customizations. For
more information, see “Customize Metrics Dashboard Layout and Functionality” on page
5-47.

1 Getting Started

1-8

In the ARCHITECTURE section of the dashboard, locate the Model Complexity widget.
This widget is a visual representation of the distribution of complexity across the
components in the model hierarchy. For each complexity range, a colored bar indicates
the number of components that fall within that range. Darker green colors indicate more
components. In this case, several components have a cyclomatic complexity value in the
lowest range, while just one component has a higher complexity. This component has a

 Collect Model Metric Data by Using the Metrics Dashboard

1-9

cyclomatic complexity above 30, which is the default threshold between compliant and
warning.

Drill-In to Explore Metric Data
To explore metric data in more detail, click an individual metric widget. For your selected
metric, a table displays the value, aggregated value, and measures (if applicable) at the
model component level. From the table, the dashboard provides traceability and
hyperlinks to the data source so that you can get detailed results.

To drill into model complexity details at the model, subsystem, and chart level, click
anywhere in the Model Complexity widget. In this example, the control_logic chart
has a cyclomatic complexity value of 51, which is yellow because it is in the warning
range.

To see this component in the model, click the control_logic hyperlink.

1 Getting Started

1-10

Refactor Model Based on Metric Data
Once you have used the dashboard to determine which components you must modify to
meet quality standards, you can refactor your model. For the Modeling Guideline
Compliance widgets, to fix issues, open the Model Advisor. For the Potential Reuse
widget, to create and link to library blocks, open the Clone Detection tool. Open the
Model Advisor and the Clone Detection tool by clicking respective buttons on the drill-in
details.

For this example, refactoring the control_logic chart by moving logic into atomic
subcharts reduces the complexity for that component.

 Collect Model Metric Data by Using the Metrics Dashboard

1-11

See Also

More About
• “Collect and Explore Metric Data by Using the Metrics Dashboard” on page 5-2
• “Model Metrics”
• “Collect Model Metrics Programmatically” on page 5-18

1 Getting Started

1-12

Refactor Models with the Clone Detector App and Model
Transformer Tool

With Simulink Check, you can use the Model Transformer tool, and the Clone Detector
app to refactor a model, improve model componentization and readability, and reuse
components within a model.

Identify and Replace Clones with Links to Library Blocks
You can use the Clone Detector app to find clones of components and identify
opportunities to reuse them. With the Clone Detector, you can:

• Identify subsystem clones.
• Create library blocks from clones.
• Create a model that replaces clones with links to library blocks.

To use the Clone Detector:

1 Open the example model ex_clone_detection.

addpath(fullfile(docroot,'toolbox','simulink','examples'))
ex_clone_detection

2 Save the model to the current folder on the MATLAB path.

 Refactor Models with the Clone Detector App and Model Transformer Tool

1-13

3 On the Apps tab, click Clone Detector. To open the Clone Detector app
programmatically, at the MATLAB command prompt type:
clonedetection('ex_clone_detection').

4 On the Clone Detector tab, click View and select Help, Results and Properties.
5 Click Find Clones.

The model contains three groups of clones. One group contains exact clones. Exact
clones are highlighted in pink. The other two groups contain similar clones. These
groups are highlighted in blue. Darker shades of blue indicate that the clones in
those groups are more similar than clones in groups with lighter shades of blue.

6 In the Clone Detection Actions and Results pane, in the Map Clone Groups to
Library tab, for the Library to place clones parameter, specify a library. If you
specify a new library name, the app creates the library.

1 Getting Started

1-14

7 In the Clone Detector tab, click Replace Clones.
8 The refactored model contains links to the library blocks in the

newLibraryFile.slx file.

After you refactor, you can remove the latest changes from the model. In the Clone
Detection Actions and Results pane, in the Logs tab, open the latest log and click
Restore.

Each time you refactor a model, the app creates a backup model in the folder named with
the prefix m2m_ plus the model name. If you have a Simulink Test license, you can verify
the equivalency of the refactored model and the original model. Click Check
Equivalency.

Replace Qualifying Modeling Patterns with Variant Blocks
To improve model componentization by replacing qualifying modeling patterns with
Variant Source and Variant Subsystem blocks, use the Model Transformer tool.

The ex_variants_transformer model contains several modeling patterns that qualify
for transformation into variant blocks.

 Refactor Models with the Clone Detector App and Model Transformer Tool

1-15

1 Open the example model ex_variants_transformer by entering these commands
at the MATLAB command line:

1 Getting Started

1-16

addpath(fullfile(docroot,'toolbox','simulink','examples'))
ex_variants_transformer

2 Save the model to your working folder.
3 On the Apps tab, open the Model Transformer tool by selecting Model Transformer.

Or, in the Command Window, type:

mdltransformer(‘ex_variants_transformer’)

4 Click Transform model to variant system.
5 Click Run This Check. In the Analysis section, the Result table contains a list of

system constants that qualify to be part of condition expressions in Variant Source or
Variant Subsystem blocks.

6 Click Refactor Model.
7 Your working folder contains a folder called m2m_ex_variants_transformer. This

folder contains the transformed model gen0_ex_variants_transformer.
8 In the Action section, the Results table contains hyperlinks to the original and

transformed models.

The Eliminate data store blocks allows you to replace data stores with blocks that
improve model readability by making data dependency explicit. For an example, see
“Improve Model Readability by Eliminating Local Data Store Blocks” on page 3-41.

 Refactor Models with the Clone Detector App and Model Transformer Tool

1-17

The Transform table lookup into prelookup and interpolation check allows you to
replace Lookup Table blocks into a single shared Prelookup block and multiple
Interpolation blocks. For an example, see “Improve Efficiency of Simulation by Optimizing
Prelookup Operation of Lookup Table Blocks” on page 3-46.

See Also

More About
• “Refactor Models”
• “Enable Component Reuse by Using Clone Detection” on page 3-32
• “Transform Model to Variant System” on page 3-26

1 Getting Started

1-18

Create a Simplified, Standalone Model Using the Model
Slicer Tool

You can simplify simulation, debugging, and formal analysis of large, complex models by
focusing on areas of interest in your model. After highlighting a portion of your model
using the Model Slicer, you can generate a simplified standalone model. The simplified
model contains the blocks and dependency paths in the highlighted portion. Apply
changes to the simplified standalone model based on simulation debugging, and formal
analysis, and then apply these changes back to the original model.

1 The example model sldemo_mdlref_basic contains three instances of the model
sldemo_mdlref_counter. To open the model, at the MATLAB command prompt,
enter:

sldemo_mdlref_basic
2 To open the Model Slicer Manager, on the Apps tab, click Model Slicer.
3 In the Model Slice Manager, click the arrow to expand the Slice configuration list.
4 Set the slice properties:

• Name: Slice1
• Color: (magenta)
• Signal Propagation: upstream

Model Slicer can also highlight the constructs downstream of or bidirectionally from
a block in your model, depending on which direction you want to trace the signal
propagation.

5 Add CounterC as a starting point. In the model, right-click CounterC and select
Model Slicer > Add as Starting Point.

 Create a Simplified, Standalone Model Using the Model Slicer Tool

1-19

The Model Slicer now highlights the upstream constructs that affect CounterC.

1 Getting Started

1-20

6 In the Model Slice Manager, click Generate slice.
7 In the Select File to Write dialog box, select the save location and enter a model

name. The simplified standalone model contains the highlighted model items.

8 To remove highlighting from the model, close the Model Slice Manager.

 Create a Simplified, Standalone Model Using the Model Slicer Tool

1-21

See Also

More About
• “Model Slicer Considerations and Limitations” on page 11-54
• “Highlight Functional Dependencies” on page 11-2
• “Refine Highlighted Model” on page 11-13

1 Getting Started

1-22

Verification and Validation

• “Test Model Against Requirements and Report Results” on page 2-2
• “Analyze a Model for Standards Compliance and Design Errors” on page 2-8
• “Perform Functional Testing and Analyze Test Coverage” on page 2-11
• “Analyze Code and Test Software-in-the-Loop” on page 2-14

2

Test Model Against Requirements and Report Results

Requirements – Test Traceability Overview
Traceability between requirements and test cases helps you interpret test results and see
the extent to which your requirements are verified. You can link a requirement to
elements that help verify it, such as test cases in the Test Manager, verify statements in
a Test Sequence block, or Model Verification blocks in a model. When you run tests, a
pass/fail summary appears in your requirements set.

This example demonstrates a common requirements-based testing workflow for a cruise
control model. You start with a requirements set, a model, and a test case. You add
traceability between the tests and the safety requirements. You run the test, summarize
the verification status, and report the results.

In this example, you conduct a simple test of two requirements in the set:

• That the cruise control system transitions to disengaged from engaged when a braking
event has occurred

• That the cruise control system transitions to disengaged from engaged when the
current vehicle speed is outside the range of 20 mph to 90 mph.

2 Verification and Validation

2-2

Display the Requirements
1 Create a copy of the project in a working folder. The project contains data,

documents, models, and tests. Enter:

path = fullfile(matlabroot,'toolbox','shared','examples',...
'verification','src','cruise')
run(fullfile(path,'slVerificationCruiseStart'))

2 In the project models folder, open the simulinkCruiseAddReqExample.slx
model.

3 Display the requirements. Click the icon in the lower-right corner of the model
canvas, and select Requirements. The requirements appear below the model
canvas.

4 Expand the requirements information to include verification and implementation
status. Right-click a requirement and select Verification Status and
Implementation Status.

 Test Model Against Requirements and Report Results

2-3

5 In the Project window, open the Simulink Test file slReqTests.mldatx from the
tests folder. The test file opens in the Test Manager.

Link Requirements to Tests
Link the requirements to the test case.

1 In the Project window, open the Simulink Test file slReqTests.mldatx from the
tests folder. The test file opens in the Test Manager. Explore the test suite and
select Safety Tests.

2 Verification and Validation

2-4

Return to the model. Right-click on requirement S 3.1 and select Link from
Selected Test Case.

A link to the Safety Tests test case is added to Verified by. The yellow bars in the
Verified column indicate that the requirements are not verified.

2 Also add a link for item S 3.4.

Run the Test
The test case uses a test harness SafetyTest_Harness1. In the test harness, a test
sequence sets the input conditions and checks the model behavior:

• The BrakeTest sequence engages the cruise control, then applies the brake. It
includes the verify statement

verify(engaged == false,...
 'verify:brake',...
 'system must disengage when brake applied')

• The LimitTest sequence engages the cruise control, then ramps up the vehicle speed
until it exceeds the upper limit. It includes the verify statement.

verify(engaged == false,...
 'verify:limit',...
 'system must disengage when limit exceeded')

1 Return to the Test Manager. To run the test case, click Run.
2 When the test finishes, review the results. The Test Manager shows that both

assessments pass and the plot provides the detailed results of each verify
statement.

 Test Model Against Requirements and Report Results

2-5

3 Return to the model and refresh the Requirements. The green bar in the Verified
column indicates that the requirement has been successfully verified.

Report the Results
1 Create a report using a custom Microsoft Word template.

a From the Test Manager results, right-click the test case name. Select Create
Report.

b In the Create Test Result Report dialog box, set the options:

2 Verification and Validation

2-6

• Title — SafetyTest
• Results for — All Tests
• File Format — DOCX
• For the other options, keep the default selections.

c Enter a file name and select a location for the report.
d For the Template File, select the ReportTemplate.dotx file in the

documents project folder.
e Click Create.

2 Review the report.

a The Test Case Requirements section specifies the associated requirements
b The Verify Result section contains details of the two assessments in the test,

and links to the simulation output.

See Also

Related Examples
• “Link to Requirements” (Simulink Test)
• “Validate Requirements Links in a Model” (Simulink Requirements)
• “Customize Requirements Traceability Report for Model” (Simulink Requirements)

 See Also

2-7

Analyze a Model for Standards Compliance and Design
Errors

Standards and Analysis Overview
During model development, check and analyze your model to increase confidence in its
quality. Check your model against standards such as MAAB style guidelines and high-
integrity system design guidelines such as DO-178 and ISO 26262. Analyze your model
for errors, dead logic, and conditions that violate required properties. Using the analysis
results, update your model and document exceptions. Report the results using
customizable templates.

Check Model for Style Guideline Violations and Design Errors
This example shows how to use the Model Advisor to check a cruise control model for
MathWorks® Automotive Advisory Board (MAAB) style guideline violations and design
errors. Select checks and run the analysis on the model. Iteratively debug issues using
the Model Advisor and rerun checks to verify that it is in compliance. After passing your
selected checks, report results.

2 Verification and Validation

2-8

Check Model for MAAB Style Guideline Violations

In Model Advisor, you can check that your model complies with MAAB modeling
guidelines.

1 Create a copy of the project in a working folder. On the command line, enter

path = fullfile(matlabroot,'toolbox','shared','examples',...
'verification','src','cruise')
run(fullfile(path,'slVerificationCruiseStart'))

2 Open the model. On the command line, enter

open_system simulinkCruiseErrorAndStandardsExample
3 In the Modeling tab, select Model Advisor.
4 Click OK to choose simulinkCruiseErrorAndStandardsExample from the

System Hierarchy.
5 Check your model for MAAB style guideline violations using Simulink Check.

a In the left pane, in the By Product > Simulink Check > Modeling Standards
> MAAB 3.0 Checks folder, select:

• Check for indexing in blocks
• Check for prohibited blocks in discrete controllers
• Check model diagnostic parameters

b Right-click on the MAAB 3.0 Checks node and select Run Selected Checks.
c Click Check model diagnostic parameters to review the configuration

parameter settings that violate MAAB style guidelines.
d In the right pane, click the parameter links to update the values in the

Configuration Parameters dialog box.
e To verify that your model passes, rerun the check. Repeat steps c and d, if

necessary, to reach compliance.
f To generate a results report of the Simulink Check checks, select the MAAB 3.0

Checks node, and then, in the right pane click Generate Report....

Check Model for Design Errors

While in Model Advisor, you can also check your model for hidden design errors using
Simulink Design Verifier.

 Analyze a Model for Standards Compliance and Design Errors

2-9

1 In the left pane, in the By Product > Simulink Design Verifier folder, select
Design Error Detection. All the checks in the folder are selected.

2 In the right pane, click Run Selected Checks.
3 After the analysis is complete, expand the Design Error Detection folder, then

select checks to review warnings or errors.
4 In the right pane, click Simulink Design Verifier Results Summary. The dialog

box provides tools to help you diagnose errors and warnings in your model.

a Review the results on the model. Click Highlight analysis results on model.
Click the Compute target speed subsystem, outlined in red. The Simulink
Design Verifier Results Inspector window provides derived ranges that can help
you understand the source of an error by identifying the possible signal values.

b Review the harness model. The Simulink Design Verifier Results Inspector
window displays information that an overflow error occurred. To see the test
cases that demonstrate the errors, click View test case.

c Review the analysis report. In the Simulink Design Verifier Results Inspector
window, click Back to summary. To see a detailed analysis report, click HTML
or PDF.

See Also

Related Examples
• “Check Model Compliance by Using the Model Advisor” on page 3-2
• “Collect Model Metrics Using the Model Advisor” on page 5-11
• “Run a Design Error Detection Analysis” (Simulink Design Verifier)
• “Prove Properties in a Model” (Simulink Design Verifier)

2 Verification and Validation

2-10

Perform Functional Testing and Analyze Test Coverage
Functional testing begins with building test cases based on requirements. These tests can
cover key aspects of your design and verify that individual model components meet
requirements. Test cases include inputs, expected outputs, and acceptance criteria.

By collecting individual test cases within test suites, you can run functional tests
systematically. To check for regression, add baseline criteria to the test cases and test the
model iteratively. Coverage measurement reflects the extent to which these tests have
fully exercised the model. Coverage measurement also helps you to add tests and
requirements to meet coverage targets.

Incrementally Increase Test Coverage Using Test Case
Generation
This example shows a functional testing-based testing workflow for a cruise control
model. You start with a model that has tests linked to an external requirements document,
analyze the model for coverage in Simulink Coverage, incrementally increase coverage
with Simulink Design Verifier, and report the results.

 Perform Functional Testing and Analyze Test Coverage

2-11

Explore the Test Harness and the Model

1 Create a copy of the project in a working folder. At the command line, enter:

path = fullfile(matlabroot,'toolbox','shared','examples',...
'verification','src','cruise')
run(fullfile(path,'slVerificationCruiseStart'))

2 Open the model and the test harness. At the command line, enter:

open_system simulinkCruiseAddReqExample
sltest.harness.open('simulinkCruiseAddReqExample','SafetyTest_Harness1')

3 Load the test suite from “Test Model Against Requirements and Report Results”
(Simulink Test) and open the Simulink Test Manager. At the command line, enter:

sltest.testmanager.load('slReqTests.mldatx')
sltest.testmanager.view

4 Open the test sequence block. The sequence tests that the system disengages when
the:

• Brake pedal is pressed
• Speed exceeds a limit

Some test sequence steps are linked to requirements document
simulinkCruiseChartReqs.docx.

Measure Model Coverage

1 In the Simulink Test Manager, click the slReqTests test file.
2 To enable coverage collection for the test case, in the right page under Coverage

Settings:

• Select Record coverage for referenced models
• Use Coverage filter filename to specify a coverage filter to use for the coverage

analysis. The default setting honors the model configuration parameter settings.
Leaving the field empty attaches no coverage filter.

• Select Decision, Condition, and MCDC.
3 To run the tests, on the Test Manager toolstrip, click Run.
4 When the test finishes navigate to the test case results in the Test Manager. The

aggregated coverage results show that the example model achieves 50% decision
coverage, 41% condition coverage, and 25% MCDC coverage.

2 Verification and Validation

2-12

Generate Tests to Increase Model Coverage

1 Use Simulink Design Verifier to generate additional tests to increase model coverage.
In Results and Artifacts, select the slReqTests test file and open the Aggregated
Coverage Results section located in the right pane.

2 Right-click the test results and select Add Tests for Missing Coverage.
3 Under Harness, choose Create a new harness.
4 Click OK to add tests to the test suite using Simulink Design Verifier. The model

being tested must either be on the MATLAB path or in the working folder.
5 On the Test Manager toolstrip, click Run to execute the updated test suite. The test

results include coverage for the combined test case inputs, achieving increased
model coverage.

See Also

Related Examples
• “Link to Requirements” (Simulink Test)
• “Assess Model Simulation Using verify Statements” (Simulink Test)
• “Compare Model Output To Baseline Data” (Simulink Test)
• “Generate Test Cases for Model Decision Coverage” (Simulink Design Verifier)
• “Increase Test Coverage for a Model” (Simulink Test)

 See Also

2-13

Analyze Code and Test Software-in-the-Loop

Code Analysis and Testing Software-in-the-Loop Overview
Analyze code to detect errors, check standards compliance, and evaluate key metrics
such as length and cyclomatic complexity. Typically for handwritten code, you check for
run-time errors with static code analysis and run test cases that evaluate the code against
requirements and evaluate code coverage. Based on the results, refine the code and add
tests. For generated code, demonstrate that code execution produces equivalent results
to the model by using the same test cases and baseline results. Compare the code
coverage to the model coverage. Based on test results, add tests and modify the model to
regenerate code.

Analyze Code for Defects, Metrics, and MISRA C:2012
This workflow describes how to check if your model produces MISRA® C:2012 compliant
code and how to check your generated code for code metrics, code defects, and MISRA
compliance. To produce more MISRA compliant code from your model, you use the code
generation and Model Advisor. To check whether the code is MISRA compliant, you use
the Polyspace MISRA C:2012 checker and report generation capabilities. For this
example, you use the model simulinkCruiseErrorAndStandardsExample. To open
the model:

1 Open the project.

2 Verification and Validation

2-14

path = fullfile(matlabroot,'toolbox','shared','examples',...
'verification','src','cruise')
run(fullfile(path,'slVerificationCruiseStart'))

2 From the project, open the model simulinkCruiseErrorAndStandardsExample.

Run Code Generator Checks

Before you generate code from your model, there are steps that you can take to generate
code more compliant with MISRA C and more compatible with Polyspace. This example
shows how to use the Code Generation Advisor to check your model before generating
code.

1 Right-click Compute target speed and select C/C++ Code > Code Generation
Advisor.

2 Select the Code Generation Advisor folder. In the right pane, move Polyspace to
Selected objectives - prioritized . The MISRA C:2012 guidelines objective is
already selected.

 Analyze Code and Test Software-in-the-Loop

2-15

3 Click Run Selected Checks.

The Code Generation Advisor checks whether there are any blocks or configuration
settings that are not recommended for MISRA C:2012 compliance and Polyspace
code analysis. For this model, the check for incompatible blocks passes, but there are
some configuration settings that are incompatible with MISRA compliance and
Polyspace checking.

4 Click on check that did not pass. Accept the parameter changes by selecting Modify
Parameters.

5 Rerun the check by selecting Run This Check.

Run Model Advisor Checks

Before you generate code from your model, there are steps you can take to generate code
that is more compliant with MISRA C and more compatible with Polyspace. This example
shows you how to use the Model Advisor to check your model before generating code.

1 At the bottom of the Code Generation Advisor window, select Model Advisor.

2 Verification and Validation

2-16

2 Under the By Task folder, select the Modeling Standards for MISRA C:2012
advisor checks.

3 Click Run Selected Checks and review the results.
4 If any of the tasks fail, make the suggested modifications and rerun the checks until

the MISRA modeling guidelines pass.

Generate and Analyze Code

After you have done the model compliance checking, you can generate the code. With
Polyspace, you can check your code for compliance with MISRA C:2012 and generate
reports to demonstrate compliance with MISRA C:2012.

1 In the Simulink editor, right-click Compute target speed and select C/C++ Code >
Build This Subsystem.

2 Use the default settings for the tunable parameters and select Build.
3 After the code is generated, right-click Compute target speed and select Polyspace >

Options.
4 Click the Configure (Polyspace Bug Finder) button. This option allows you to choose

more advanced Polyspace analysis options in the Polyspace configuration window.

 Analyze Code and Test Software-in-the-Loop

2-17

5 On the same pane, select Calculate Code Metrics. This option turns on code metric
calculations for your generated code.

6 Save and close the Polyspace configuration window.
7 From your model, right-click Compute target speed and select Polyspace > Verify >

Code Generated For Selected Subsystem.

Polyspace Bug Finder analyzes the generated code for a subset of MISRA checks and
defect checks. You can see the progress of the analysis in the MATLAB Command
Window. Once the analysis is finished, the Polyspace environment opens.

2 Verification and Validation

2-18

Review Results

After you run a Polyspace analysis of your generated code, the Polyspace environment
shows you the results of the static code analysis.

1 Expand the tree for rule 8.7 and click through the different results.

Rule 8.7 states that functions and objects should not be global if the function or
object is local. As you click through the 8.7 violations, you can see that these results
refer to variables that other components also use, such as CruiseOnOff. You can
annotate your code or your model to justify every result. But, because this model is a
unit in a larger program, you can also change the configuration of the analysis to
check only a subset of MISRA rules.

2 In your model, right-click Compute target speed and select Polyspace > Options.

 Analyze Code and Test Software-in-the-Loop

2-19

3 Set the Settings from (Polyspace Bug Finder) option to Project configuration.
This option allows you to choose a subset of MISRA rules in the Polyspace
configuration.

4 Click the Configure button.
5 In the Polyspace Configuration window, on the Coding Standards & Code Metrics

pane, select the check box Check MISRA C:2012 and from the drop-down list,
select single-unit-rules. Now, Polyspace checks only the MISRA C:2012 rules
that are applicable to a single unit.

6 Save and close the Polyspace configuration window.
7 Rerun the analysis with the new configuration.

The rules Polyspace showed previously were found because the model was analyzed
by itself. When you limited the rules Polyspace checked to the single-unit subset, only
two violations were found.

2 Verification and Validation

2-20

When this model is integrated with its parent model, you can add the rest of the MISRA
C:2012 rules.

Generate Report

To demonstrate compliance with MISRA C:2012 and report on your generated code
metrics, you must export your results. This section shows you how to generate a report
after the analysis. If you want to generate a report every time you run an analysis, see
Generate report.

1 If they are not open already, open your results in the Polyspace environment.
2 From the toolbar, select Reporting > Run Report.
3 Select BugFinderSummary as your report type.
4 Click Run Report.

The report is saved in the same folder as your results.
5 To open the report, select Reporting > Open Report.

See Also

Related Examples
• “Run Polyspace Analysis on Code Generated with Embedded Coder” (Polyspace Bug

Finder)
• “Test Two Simulations for Equivalence” (Simulink Test)
• “Export Test Results and Generate Test Results Reports” (Simulink Test)

 See Also

2-21

Checking Systems Interactively

3

Check Model Compliance by Using the Model Advisor

Model Advisor Overview
The Model Advisor checks your model or subsystem for modeling conditions and
configuration settings that cause inaccurate or inefficient simulation of the system that
the model represents. The Model Advisor checks can help you verify compliance with
industry standards and guidelines. By using the Model Advisor, you can implement
consistent modeling guidelines across projects and development teams.

Upon completing the analysis of your model, the Model Advisor produces a report that
lists the suboptimal conditions, settings, and modeling techniques and proposes solutions,
when applicable.

You can use the Model Advisor to check your model in these ways:

• Interactively run Model Advisor checks
• Configure the Model Advisor to automatically run edit-time checks (requires Simulink

Check)

These limitations apply when you use the Model Advisor to check your model. For
limitations that apply to specific checks, see the Capabilities and Limitations section in
the check documentation.

• If you rename a system, you must restart the Model Advisor to check that system.
• In systems that contain a variant subsystem, the Model Advisor checks only the active

subsystem.
• Model Advisor does not analyze commented blocks.
• Checks do not search in model blocks or subsystem blocks with the block parameter

Read/Write set to NoReadorWrite. However, on a check-by-check basis, Model
Advisor checks do search in library blocks and masked subsystems.

• Unless specified otherwise in the documentation for a check, the Model Advisor does
not analyze the contents of a Model block. To run checks on referenced models, use
instances of the Advisor.Application class (Simulink Check license required).

Note Software is inherently complex and may not be free of errors. Model Advisor
checks might contain bugs. MathWorks reports known bugs brought to its attention on its
Bug Report system at https://www.mathworks.com/support/bugreports/. The bug reports

3 Checking Systems Interactively

3-2

https://www.mathworks.com/support/bugreports/

are an integral part of the documentation for each release. Examine bug reports for a
release as such reports may identify inconsistencies between the actual behavior of a
release you are using and the behavior described in this documentation.

While applying Model Advisor checks to your model increases the likelihood that your
model does not violate certain modeling standards or guidelines, their application cannot
guarantee that the system being developed will be safe or error-free. It is ultimately your
responsibility to verify, using multiple methods, that the system being developed provides
its intended functionality and does not include unintended functionality.

Model Advisor Checks Documentation

The Model Advisor only displays the checks for your installed products. This table
provides links to the product-specific check documentation. A product license may be
required to review some of the documentation.

Product Model Advisor Check Documentation
Simulink “Simulink Checks” (Simulink)
Embedded Coder “Embedded Coder Checks” (Embedded

Coder)
AUTOSAR Blockset “MathWorks AUTOSAR Blockset Checks”

(AUTOSAR Blockset)
Simulink Coder™ “Simulink Coder Checks” (Simulink Coder)
HDL Coder™ “Model Checks in HDL Coder” (HDL Coder)
Simulink Code Inspector™ “Simulink Code Inspector Checks”

(Simulink Code Inspector)

 Check Model Compliance by Using the Model Advisor

3-3

Product Model Advisor Check Documentation
Simulink Check “DO-178C/DO-331 Checks”

“IEC 61508, IEC 62304, ISO 26262, and EN
50128 Checks”

“High Integrity System Modeling Checks”

“MathWorks Automotive Advisory Board
Checks”

“Japan MATLAB Automotive Advisory Board
Checks”

“MISRA C:2012 Checks”

“Secure Coding Checks for CERT C, CWE,
and ISO/IEC TS 17961 Standards”

“Model Metrics”

“Clone Detection Checks”
Simulink Design Verifier “Simulink Design Verifier Checks”

(Simulink Design Verifier)
Simulink Requirements “Requirements Consistency Checks”

(Simulink Requirements)
Simscape™ Documentation is available only in the

Model Advisor. To review the
documentation for the check, in the Model
Advisor, right-click on the check title and
select What's This?

Simulink Control Design™ “Simulink Control Design Checks”
(Simulink Control Design)

IEC Certification Kit “IEC Certification Kit Checks for Bug
Reports” (IEC Certification Kit)

“High Integrity System Modeling Checks”

3 Checking Systems Interactively

3-4

Product Model Advisor Check Documentation
DO Qualification Kit “DO Qualification Kit Checks for Bug

Reports” (DO Qualification Kit)

“High Integrity System Modeling Checks”

Run Model Advisor Checks and Review Results
You can use the Model Advisor to check your model interactively against modeling
standards and guidelines. The following example uses the sldemo_mdladv model to
demonstrate the execution of the Model Advisor checks using the Model Advisor.

1 Open the Model Advisor example model sldemo_mdladv.
2 To open the Model Advisor, in the Simulink editor, click the Modeling tab and select

Model Advisor. A System Selector ― Model Advisor dialog box opens. Select the
model or system that you want to review and click OK.

3 In the left pane of the Model Advisor, select the checks you want to run on your
model:

a You can select the checks by using the By Product or By Task folders. If these
folders are not displayed in the Model Advisor window, open Settings >
Preferences and select:

• Show By Product Folder ― Displays checks available for each product
• Show By Task Folder ― Displays checks related to specific tasks

b You can search for and execute a specific check by enter the Title or TitleID of
the check in the Find: field and click the Find Next button. The Model Advisor
searches in check names, folder names, and analysis descriptions. You can use
the Source tab to identify the Title, TitleID, and location of the MATLAB® source
code for each check. To display the Source in the right pane of the Model
Advisor, open Settings > Preferences and select Show Source Tab.

4 Click on the folder that contains the checks and, on the right pane of the Model
Advisor, select:

• Show report after run to automatically generate and display the report in HTML
format

• Run Selected Checks to execute the analysis.

To run a single check, right-click the check in the folder and select Run This Check.

 Check Model Compliance by Using the Model Advisor

3-5

matlab:sldemo_mdladv

5 View the results on the Model Advisor User Interface. Common check status results
include

• Pass ─ Check did not identify issues.
• D-Pass ─ Dependent on configuration parameter or successful execution of

another check.
• Warn ─ Check has identified issues.
• Fail ─ Check fails to execute.

6 Fix the warnings or failures as desired. For more information, see “Address Model
Check Results” (Simulink).

Note Prior to applying a fix, you can save a restore point, which is a snapshot in time
of the model, base workspace, and Model Advisor. By saving a restore point, you can
revert changes that you made in response to recommendations from the Model
Advisor.

7 Use the Exclusions tab to review checks that were marked for exclusion from the
analysis. To display the Exclusions tab in the right pane of the Model Advisor, open
Settings > Preferences and select Show Exclusion tab.

8 View and save the report. For additional information, see “Save and View Model
Advisor Check Reports” (Simulink).

Note If you did not select Show report after run when you executed the checks,
you can generate a report of the results after the analysis is complete. See “Generate
Model Advisor Reports” on page 3-105.

9 If desired, you can reset the status of the checks to the Not Run state. In the left
pane, right-click on Model Advisor and select Reset. This action does not delete the
results of the analysis from the Model Advisor.

Save Analysis Time by Running the Checks from a Previous Analysis

You can save time by consistently running the same set of checks on your model by using
the Model Advisor dashboard. When you use the dashboard, the Model Advisor does not
reload the checks before executing them, saving analysis time.

1 Open the Model Advisor example model sldemo_mdladv.

3 Checking Systems Interactively

3-6

matlab:sldemo_mdladv

2 Select Model Advisor > Model Advisor Dashboard. A System Selector ― Model
Advisor dialog box opens. Select the model or system that you want to review and
click OK.

3 The Model Advisor Dashboard window opens. From this dashboard, you can:

• Click the Run checks button to execute the same checks from the previous
analysis

• Click the Switch to standard view button to open the Model Advisor and select
different checks

• Click the Enable Highlighting button to view the highlighted results in the
Simulink editor

4 Click the Run checks button to run the same checks on the model that were used in
the previous analysis. If desired, click the Enable Highlighting button.

5 The Model Advisor execute the checks and updates the dashboard to reflect the
results of the analysis, including the number of:

• Passed checks
• Failed checks
• Flagged checks
• Total checks

If you clicked the Enable Highlighting button, the flagged results are highlighted in
the model.

The Model Advisor Highlighting information window opens with a link to the Model
Advisor window. In the Model Advisor window, you can find more information about
the check results and how to fix the warning condition.

 Check Model Compliance by Using the Model Advisor

3-7

6 Click the Open Report button to open the entire report in HTML format.
Alternatively, you can select the number link beside the results to filter the report
results.

Check Your Model by Using Edit Time Checks
You can identify modeling issues earlier in the model design process by using edit-time
checking.

To enable edit-time checking, in the Simulink editor, click the Debug tab and select these
Diagnostics options:

• Edit-Time Errors & Warnings ― Automatically highlights check violations in the
model. The Simulink editor highlights objects that violate the edit-time checks in red
(for errors) or orange (for warnings). When you point to an object that is highlighted
and click the error or warning badge, a tooltip displays details and possible fixes.

• Edit-Time checks ― When using edit-time checking, the Model Advisor evaluates the
model against a subset of Model Advisor checks. Highlighted blocks in the model
editor window alert you to issues in your model. You can also enable this option by
clicking the Modeling tab and selecting Model Advisor > Edit-Time Checks.

To enable edit-time checking of modeling issues that are specific for code generation,
open the C Code app (available with Embedded Coder or Simulink Coder) and select the
C/C++ Code Advisor > Edit-Time Checks box.

Use Model Advisor Edit Time Checking to Highlight Issues

When using edit-time checking, the Model Advisor highlights blocks that violate the
Model Advisor checks.

Use one of these methods to enable edit-time checking of your model:

• In the Debug tab, select Diagnostics > Edit-Time Checks

3 Checking Systems Interactively

3-8

• In the Modeling tab, select Model Advisor > Edit-Time Checks

The Model Advisor highlights blocks in your model that violate Model Advisor checks.
Point to a highlighted block and click the error or warning icon.

The Model Advisor identifies compliance issues in the block that violate edit-time checks.
When a block has multiple check violations, you can move between the edit-time
violations by using the << and >> buttons. For each issue, you can:

• Review the cause.
• Click the question mark to access detailed documentation about the flagged Model

Advisor check.
• Ignore the warning and add the block to the exclusion list for that check by clicking

Ignore.

 Check Model Compliance by Using the Model Advisor

3-9

In this example, you use edit-time checking to verify the compliance of a Stateflow chart
with the MAAB guidelines while you edit.

1 Open a model that contains Stateflow charts. For example, at the command prompt,
type: open sf_boiler.

2 To enable the edit-time checking, in the Modeling tab, select Model Advisor >
Edit-Time Checks .

3 Open the Bang-Bang Controller chart by double-clicking it. The Model Advisor
highlights multiple states. Place your cursor over the warning of the Off state to
discover the issue.

3 Checking Systems Interactively

3-10

4 Select the warning. The Model Advisor indicates that there must be a new line after
entry: to comply with the MAAB guidelines. In your model, place your cursor after
en: and press Enter. A new line is added and the warning is cleared.

View and Configure the Model Advisor Edit-Time Checks
When you run the Model Advisor edit-time checks, the Model Advisor evaluates the model
against a subset of Model Advisor checks. To view and configure the Model Advisor
checks that edit-time checking flags:

1 In the Simulink editor, click the Modeling tab and select Model Advisor >
Customize Edit-Time Checks.

2 In the Model Advisor Configuration Editor, verify that the Edit-time Supported
Checks item is selected from the Show drop-down list. The filtered list identifies the
model advisor checks that are flagged.

 Check Model Compliance by Using the Model Advisor

3-11

3 Select or clear checks. Selected checks are included in the edit-time check analysis.
You can use the Input Parameters options to customize each check.

4 If you have made updates to check selection or behavior, save the current
configuration. Then select File > Set Current Configuration as Default.

Note Only the default configuration can change the behavior of edit-time checks.

To customize the behavior of edit-time checks, configure updates in the filtered view of
edit-time checks in the Model Advisor Configuration Editor. If a check appears in multiple
folders of your Model Advisor tree, for edit-time checking, Model Advisor prioritizes the
check in your custom folder. If the check is not in your custom folder, priority goes to the
check in the By Task folder, and finally to the check in your By Product folder.

3 Checking Systems Interactively

3-12

See Also

Related Examples
• “Run Model Advisor Checks and Review Results” on page 3-5
• “Address Model Check Results” (Simulink)
• “Generate Model Advisor Reports” on page 3-105
• “Save and View Model Advisor Check Reports” (Simulink)
• “Find Model Advisor Check IDs” (Simulink)
• “Archive and View Results” on page 4-7

More About
• “Check Your Model Using the Model Advisor” (Simulink)
• “Exclude Blocks From the Model Advisor Check Analysis” on page 3-14

 See Also

3-13

Exclude Blocks From the Model Advisor Check Analysis

Model Advisor Exclusion Overview
To save time during model development and verification, you can limit the scope of a
Model Advisor analysis of your model. You can create a Model Advisor exclusion to
exclude blocks in the model from selected checks. You can exclude all or selected checks
from:

• Simulink blocks
• Stateflow® charts

After you specify the blocks to exclude, Model Advisor uses the exclusion information to
exclude blocks from specified checks during analysis. By default, Model Advisor exclusion
information is stored in the model SLX file. Alternately, you can store the information in
an exclusion file.

To view exclusion information for the model, right-click in the model window or right-click
a block and select Model Advisor > Open Model Advisor Exclusion Editor.

The Model Advisor Exclusion Editor dialog box includes the following information for
each exclusion.

3 Checking Systems Interactively

3-14

Field Description
Rationale A description of why this object is excluded from Model

Advisor checks. The rationale field is the only field that you
can edit.

Type Whether a specific block is excluded or all blocks of a given
type are excluded.

Value Name of excluded block or blocks.
Check ID (s) Names of checks for which the block exclusion applies.

Note If you comment out blocks, they are excluded from both simulation and Model
Advisor analysis.

Save Model Advisor Exclusions in a Model File
To save Model Advisor exclusions to the model .slx file, in the Model Advisor Exclusion
Editor dialog box, select Store exclusions in model file. When you open the
model .slx file, the model contains the exclusions.

Save Model Advisor Exclusions in Exclusion File
A Model Advisor exclusion file specifies the collection of blocks to exclude from specified
checks in an exclusion file. You can create exclusions and save them in an exclusion file.
To use an exclusion file, in the Model Advisor Exclusion Editor dialog box, clear Store
exclusions in model file. The Exclusion File field is enabled.

The Exclusion File contains the exclusion file name and location associated with the
model. You can use an exclusion file with several models. However, a model can have only
one exclusion file.

Unless you specify a different folder, the Model Advisor saves exclusion files in the
current folder. The default name for an exclusion file is
<model_name>_exclusions.xml.

If you create an exclusion file and save your model, you attach the exclusion file to your
model. Each time that you open the model, the blocks and checks specified in the
exclusion file are excluded from the analysis.

 Exclude Blocks From the Model Advisor Check Analysis

3-15

Create Model Advisor Exclusions
1 In the model window, right-click a block and select Model Advisor. Select the menu

option for the type of exclusion that you want to do.

To Select Model Advisor >
Exclude the block from
all checks.

Exclude block only > All Checks

Exclude all blocks of this
type from all checks.

Exclude all blocks with type <block_type> > All
Checks

Exclude the block from
selected checks.

• Exclude block only > Select Checks.
• In the Check Selector dialog box, select the

checks. Click OK.
Exclude all blocks of this
type from selected
checks.

• Exclude all blocks with type <block_type> >
Select Checks.

• In the Check Selector dialog box, select the
checks. Click OK.

Exclude the block from
all failed checks. After a
Model Advisor analysis,
this option is available.

Exclude block only > Only failed checks

Exclude all blocks of this
type from all failed
checks. After a Model
Advisor analysis, this
option is available.

Exclude all blocks with type <block_type> >
Only failed checks

Exclude the block from a
failed check. After a
Model Advisor analysis,
this option is available.

Exclude block only > <name of failed check>

Exclude all blocks of this
type from a failed check.
After a Model Advisor
analysis, this option is
available.

Exclude all blocks with type <block_type> >
<name of failed check>

2 In the Model Advisor Exclusion Editor dialog box, to:

3 Checking Systems Interactively

3-16

• Store exclusions in model file, select Store exclusions in model file. Click OK or
Apply to create the exclusion.

• Save the information to an exclusion file, clear Store exclusions in model file.
Click OK or Apply. If this exclusion is the first one, a Save Exclusion File as dialog
box opens. In this dialog box, click Save to create a exclusion file with the default
name <model_name>_exclusions.xml in the current folder. Optionally, you can
select a different file name or location.

3 Optionally, if you want to change the exclusion file name or location:

a In the Model Advisor Exclusion Editor dialog box, clear Store exclusions in
model file.

b In the Model Advisor Exclusion Editor dialog box, select Change.
c In the Change Exclusion File dialog box, select Save as.
d In the Save Exclusion File dialog box, navigate to the location that you want and

enter a file name. Click Save.
e In the Model Advisor Exclusion Editor dialog box, select OK or Apply to create

the exclusion and save the information to an exclusion file.

You can create as many Model Advisor exclusions as you want by right-clicking model
blocks and selecting Model Advisor. Each time that you create an exclusion, the Model
Advisor Exclusion Editor dialog box opens. In the Rationale field, you can specify a
reason for excluding blocks or checks from the Model Advisor analysis. The rationale is
useful to others who review your model.

If you create an exclusion file and save your model, you attach the exclusion file to your
model. Each time that you open the model, the blocks and checks specified in the
exclusion file are excluded from the analysis.

Review Model Advisor Exclusions
You can review the exclusions associated with your model. Before or after a Model
Advisor analysis, to view exclusions information:

• Right-click in the model window or right-click a block and select Model Advisor >
Open Model Advisor Exclusion Editor. The Model Advisor Exclusion Editor dialog
box lists the exclusions for your model.

• In the Modeling tab, open Model Advisor > Preferences. In the Model Advisor
Preferences dialog box, select Show Exclusion tab. In the right pane of the Model

 Exclude Blocks From the Model Advisor Check Analysis

3-17

Advisor window, select the Exclusions tab to display checks that are excluded from
the Model Advisor analysis.

• In the Modeling tab, select Model Advisor to open the Model Advisor.

1 On the Model Advisor window toolbar, select Highlighting > Highlight
Exclusions. By default, this menu option is selected.

2
In the Model Advisor window, click Enable highlighting ().

After the Model Advisor analysis, you can view exclusion information for individual checks
in the:

• HTML report. Before the analysis, in the Model Advisor window, make sure that you
select the Show report after run check box.

• After you run the checks, in the left pane of the Model Advisor window, the checks that
contain exclusion rules are highlighted in orange. The Model Advisor results include
additional information about the exclusion.

If the check The HTML report and Model Advisor window
Has no exclusions rules
applied.

Show that no exclusions were applied to this check.

Does not support
exclusions.

Shows that the check does not support exclusions.

Is excluded from a
block.

Lists the check exclusion rules.

Manage Exclusions
Save Exclusions in a File

1 In the Model Advisor Exclusion Editor dialog box, clear Store exclusions in model
file and click OK or Apply. If this exclusion is the first one, a Save Exclusion File as
dialog box opens. In this dialog box, click Save to create an exclusion file with the
default name <model_name>_exclusions.xml in the current folder. Optionally, you
can select a different file name or location.

2 If you want to change the exclusion file name or location:

a In the Model Advisor Exclusion Editor dialog box, select Change.

3 Checking Systems Interactively

3-18

b In the Change Exclusion File dialog box, select Save as.
c In the Save Exclusion File dialog box, navigate to the location that you want and

enter a file name. Click Save.
d In the Model Advisor Exclusion Editor dialog box, select OK or Apply to create

the exclusion and save the information in an exclusion file.

Load an Exclusion File

To load an existing exclusion file for use with your model:

1 In the Model Advisor Exclusion Editor dialog box, clear Store exclusions in model
file. Click Change.

2 In the Change Exclusion File dialog box, click Load.
3 Navigate to the exclusion file that you want to use with your model. Select Open.
4 In the Model Advisor Exclusion Editor dialog box, click OK to associate the exclusion

file with your model.

Detach an Exclusion File

To detach an exclusion file associated with your model:

1 In the Model Advisor Exclusion Editor dialog box, clear Store exclusions in model
file. Click Change.

2 In the Change Exclusion File dialog box, click Detach.
3 In the Model Advisor Exclusion Editor dialog box, click OK.

Remove an Exclusion

1 In the Model Advisor Exclusion Editor dialog box, select the exclusions that you want
to remove.

2 Click Remove Exclusion.

Add a Rationale to an Exclusion

You can add text that describes why you excluded a particular block or blocks from
selected checks during Model Advisor analysis. A description is useful to others who
review your model.

1 In the Model Advisor Exclusion Editor dialog box, double-click the Rationale field for
the exclusion.

 Exclude Blocks From the Model Advisor Check Analysis

3-19

2 Delete the existing text.
3 Add the rationale for excluding this object.

Programmatically Specify an Exclusion File

You can use the MAModelExclusionFile method to programmatically specify the name
of an exclusion file.

1 Use get_param to obtain the model object. For example, for sldemo_mdladv:

mo = get_param('sldemo_mdladv','Object')
2 Use MAModelExclusionFile to specify the name of an exclusion file. For example,

to specify exclusion file my_exclusion.xml in S:\work:

mo.MAModelExclusionFile = ['S:\work\','my_exclusion.xml']
3 Open the Model Advisor Exclusion Editor dialog box. The Exclusion File field

contains the specified exclusion file and path.

Exclude Blocks from Edit Time Checking
While editing a model, you can exclude blocks from Model Advisor analysis. Applicable
Model Advisor exclusions specified through the Simulink editor are also applied during
edit-time.

To exclude a block from Model Advisor analysis during edit-time:

1 From the command prompt, open sldemo_fuelsys.
2 Introduce a warning that is visible in edit-time checking. Add the number 9 to the

beginning of the Engine Speed block name. This number causes a violation in “Check
character usage in block names”.

3 In the Modeling tab, select Edit-Time Checks. The Scope block flags the warning
Block name has incorrect characters.

3 Checking Systems Interactively

3-20

4 To exclude the Engine Speed block from Model Advisor analysis, either:

a Right-click the block, select Model Advisor > Exclude block only > Select
checks, and select the check.

b Click the warning icon and click the Ignore button. For this block, clicking
Ignore adds an exclusion to Model Advisor analysis.

The block is excluded from Model Advisor analysis for that check and no longer displays a
highlight. You can repeat this process for further edit-time warnings.

Note The list of edit-time exclusions is shared between the Model Advisor and edit-time
checking.

Limit Model Checks by Excluding Gain and Outport Blocks
This example shows how to exclude a Gain block and all Outport blocks from a Model
Advisor check during a Model Advisor analysis. By excluding individual blocks from

 Exclude Blocks From the Model Advisor Check Analysis

3-21

checks, you limit the scope of the analysis and might save time during model development
and verification.

1 At the MATLAB command line, type sldemo_mdladv.
2 From the model window, in the Modeling tab, select Model Advisor to open the

Model Advisor. A System Selector - Model Advisor dialog box opens. Click OK.
3 In the left pane of the Model Advisor window, expand By Product > Simulink.

Select the Show report after run check box to see an HTML report of check results
after you run the checks.

4 Note If the By Product folder is not displayed in the Model Advisor window, select
Show By Product Folder from the Settings > Preferences dialog box.

5 Run the selected checks by clicking the Run selected checks button. After the
Model Advisor runs the checks, an HTML report displays the check results in a
browser window. The check Identify unconnected lines, input ports, and output
ports triggers a warning.

6 In the left pane of the Model Advisor window, select the check By Product >
Simulink > Identify unconnected lines, input ports, and output ports.

7
In the Model Advisor window, click the Enable highlighting button ().

• The model window opens. The blocks causing the Identify unconnected lines,
input ports, and output ports check warning are highlighted in yellow.

• The Model Advisor Highlighting window opens with a link to the Model Advisor
window. In the Model Advisor window, you can find more information about the
check results and how to fix the warning condition.

3 Checking Systems Interactively

3-22

matlab:sldemo_mdladv

8 After reviewing the check results, exclude the Gain2 block from all Model Advisor
checks:

a In the model window, right-click the Gain2 block and select Model Advisor >
Exclude block only > All checks .

b In the Model Advisor Exclusion Editor dialog box, double-click in the first row of
the Rationale field, and enter Exclude gain block.

c Click OK to store the exclusion in the model file.

 Exclude Blocks From the Model Advisor Check Analysis

3-23

9 After reviewing the check results, exclude all Outport blocks from the Identify
unconnected lines, input ports, and output ports check:

a Right-click the Out4 block and select Model Advisor > Exclude all blocks of
type Outport > Identify unconnected lines, input ports, and output ports.

b In the Model Advisor Exclusion Editor dialog box, click OK to store the exclusion
in the model file.

10 In the left pane of the Model Advisor window, select By Product > Simulink and
then:

• Select the Show report after run check box.
• Click Run Selected Checks to run a Model Advisor analysis.

11 After the Model Advisor completes the analysis, you can view exclusion information
for the Identify unconnected lines, input ports, and output ports check in the:

• HTML report:

• Model Advisor window. In the left pane of the Model Advisor window, select By
Product > Simulink > Identify unconnected lines, input ports, and output
ports.

3 Checking Systems Interactively

3-24

12 Close sldemo_mdladv.

See Also

Related Examples
• “Exclude Blocks From Custom Checks” on page 7-83
• “Run Model Advisor Checks and Review Results” on page 3-5
• “Address Model Check Results” (Simulink)
• “Generate Model Advisor Reports” on page 3-105
• “Save and View Model Advisor Check Reports” (Simulink)
• “Find Model Advisor Check IDs” (Simulink)
• “Archive and View Results” on page 4-7

More About
• “Check Your Model Using the Model Advisor” (Simulink)
• “Exclude Blocks From the Model Advisor Check Analysis” on page 3-14

 See Also

3-25

Transform Model to Variant System
You can use the Model Transformer tool to improve model componentization by replacing
qualifying modeling patterns with Variant Source and Variant Subsystem, Variant Model
blocks. The Model Transformer reports the qualifying modeling patterns. You choose
which modeling patterns the tool replaces with a Variant Source block or Variant
Subsystem block.

The Model Transformer can perform these transformations:

• If an If block connects to one or more If Action Subsystems and each one has one
outport, replace this modeling pattern with a subsystem and a Variant Source block.

• If an If block connects to an If Action Subsystem that does not have an outport or has
two or more outports, replace this modeling pattern with a Variant Subsystem block.

• If a Switch Case block connects to one or more Switch Case Action Subsystems and
each one has one outport, replace this modeling pattern with a subsystem and a
Variant Source block.

• If a Switch Case block connects to a Switch Case Action Subsystem that does not have
an outport or has two or more outports, replace this modeling pattern with a Variant
Subsystem block.

• Replace a Switch block with a Variant Source block.
• Replace a Multiport Switch block that has two or more data ports with a Variant

Source block.

For the Model Transformer tool to perform the transformation, the control input to
Multiport Switch or Switch blocks and the inputs to If or Switch Case blocks must be
either of the following:

• A Constant block in which the Constant value parameter is a Simulink.Parameter
object of scalar type.

• Constant blocks in which the Constant value parameters are Simulink.Parameter
objects of scalar type and some other combination of blocks that form a supported
MATLAB expression. The MATLAB expressions in “Operators and Operands in Variant
Condition Expressions” (Simulink) are supported except for bitwise operations.

Example Model
This example shows how to use the Model Transformer to transform a model into a
variant system. The example uses the model rtwdemo_controlflow_opt. This model

3 Checking Systems Interactively

3-26

has three Switch blocks. The control input to these Switch blocks is the
Simulink.Parameter cond. The Model Transformer dialog box and this example refer
to cond as a system constant.

1 Open the model. In the Command Window, type rtwdemo_controlflow_opt.
2 Open the Switch1 Block Parameters dialog box. Change the Threshold parameter

to 0. The Threshold parameter must be an integer because after the variant
transformation it is part of the condition expression in the Variant Source block.

3 Repeat step 2 for the Switch blocks Switch1, Switch2, and Switch3.
4 Save the model to your working folder.

 Transform Model to Variant System

3-27

Perform Variant Transform on Example Model
1 From the Model Editor, open the Model Transformer by selecting Analysis >

Refactor Model > Model Transformer. Or, in the Command Window, type:
mdltransformer('rtwdemo_controlflow_opt')

2 Select the check “Transform the model to variant system”.

3 Checking Systems Interactively

3-28

 Transform Model to Variant System

3-29

3 In the Specify system constant cell array field, you can specify a cell array of
character vectors consisting of Simulink.Parameters. The base workspace must
contain their definitions.

4 In the Prefix of transformed model name field, specify a prefix for the model
name. If you do not specify a prefix, the default is gen0.

5 Select Run This Check. The Model Transformer lists system constants and blocks
that qualify to be part of condition expressions in Variant Source or Variant
Subsystem blocks. For the Model Transformer to list a system constant, it must be a
Simulink.Parameter object of scalar type. For this example, Cond qualifies to part
of a condition expression.

6 If you do not want one of the transformations to occur, you can clear the check box
next to it.

7 Select Refactor Model. The Model Transformer provides a hyperlink to the
transformed model and hyperlinks to the corresponding blocks in the original model
and the transformed model.

The transformed model or models are in the folder that has the prefix m2m plus the
original model name. For this example, the folder name is
m2m_rtwdemo_controlflow_opt.

8 In the original model rtwdemo_controlflow_opt, right-click one of the Switch
blocks. In the menu, select Model Transformer > Traceability to Transformed
Block. In the transformed model gen0_rtwdemo_controlflow_opt, the
corresponding Variant Source block is highlighted.

9 In the transformed model gen0_rtwdemo_controlflow_opt, right-click one of the
Switch blocks. In the menu, select Model Transformer > Traceability to Original
Block. In the original model rtwdemo_controlflow_opt, the corresponding
Switch block is highlighted.

Model Transformation Limitations
The Model Transformer tool has these limitations:

• In order to run the Model Transformer on a model, you must be able to simulate the
model.

• If an If Action Subsystem block drives a Merge block, and the Merge block has
another inport that is either unconnected or driven by another conditional subsystem,
the Model Transformer does not add a Variant Source block. This modeling pattern
produces a warning and an excluded candidate message.

3 Checking Systems Interactively

3-30

• The Model Transformer cannot perform a variant transformation for every modeling
pattern. This list contains some exceptions:

• The model contains a protected model reference block.
• A model contains a Variant Source block with the Analyze all choices during

update diagram and generate preprocessor conditionals parameter set to
off.

• After you run one or more tasks, you cannot rerun the tasks because the Run this
Task and Run All buttons are deactivated. If you want to rerun a task, reset the
Model Transformer by right-clicking Model Transformer and selecting Reset.

• Do not change a model in the middle of a transformation. If you want to change the
model, close the Model Transformer, modify the model, and then reopen the Model
Transformer.

• For the hyperlinks in the Model Transformer to work, you must have the model to
which the links point to open.

See Also

Related Examples
• “Variant Systems” (Simulink)

 See Also

3-31

Enable Component Reuse by Using Clone Detection
Clones are modeling patterns that have identical block types and connections. The Clone
Detector app identifies clones across referenced model boundaries. You can use the Clone
Detector app to reuse components by creating library blocks from subsystem clones and
replacing the clones with links to those library blocks. You can also use the tool to link to
clones in an existing library.

Exact Clones and Similar Clones
There are two types of clones: exact clones and similar clones. Exact clones have identical
block types, connections, and parameter values. Similar clones have identical block types
and connections, but they can have different block parameter values. For example, the
value of a Gain block can be different in similar clones but must be the same in exact
clones.

Exact clones and similar clones can have these differences:

• Two clones can have a different sorted order.
• The length of signal lines and the location and size of blocks can be different if the

block connections are the same.
• Blocks and signals can have different names.

To detect only exact clones, for each check in the Identify Modeling Clones tool, set the
Maximum Number of Unmatched Block Parameters to 0. Increasing this parameter
value increases the number of similar clones that the tool can potentially detect.

After you identify clones, you can replace them with links to library blocks. Similar clones
link to masked library subsystems.

Identify Exact and Similar Clones
This example shows how to use the Clone Detector app to identify exact clones and
similar clones, and then replace them with links to library blocks.

1 Open the model ex_clone_detection. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','simulink','examples'))
ex_clone_detection

3 Checking Systems Interactively

3-32

2 Save the model to your working folder. A model must be open to access the app.

 Enable Component Reuse by Using Clone Detection

3-33

3 On the Apps tab, click Clone Detector. Alternatively, on the MATLAB command line
enter:

clonedetection("ex_clone_detection")
4 The app opens the Clone Detector tab. This example takes you through each section.

Set Up panes for Clone Detection

The app displays information on multiple panes. You can select three of the panes under
the View menu. The panes are:

• Help. Select to access a help pane that contains an overview of the clone detection
workflow.

• Results. Select to view the Clone Detection and Results pane.
• Properties. Select to view the Detected Clone Properties pane.

Set the Parameters for Clone Detection

You can set up the parameters for clone detection by using the Settings drop-down
menu.

• Select Ignore differences in > Signal Names to identify and classify clones when
the signal names are different.

• Select Ignore differences in > Block Properties to identify and classify clones
when the block properties are different. For more information about block properties,
see “Specify Block Properties” (Simulink).

• Click Exclude Components to access the Exclude model references, Exclude
library Links, and Exclude inactive and commented out regions options.
Enabling the Exclude inactive and commented out regions option identifies
variable number clones because of Variant Source block in the model. For more
information, see “Exclude subsystems and referenced models from clone detection”.
Enabling the Exclude model references and Exclude library Links options will lead
to identification of fewer clones, depending on the model.

3 Checking Systems Interactively

3-34

• Click Match Patterns with Libraries and select an external library to look for
clones. For more information, see “Identifying and Replacing Clones in Model
Libraries” on page 3-39.

• The Maximum number of unmatched block parameters is 50 by default. This
represents the number of parameters that can vary among subsystems and still be
classified as similar clones. You may reduce this number to identify and classify fewer
similar clones. Setting the value to zero, will identify only exact clones.

Identify Clones in the Model

1 In the Detect section, in the Find Clones in System tab, enter
ex_clone_detection as the model to identify clones in. Toggle the pin to access
other subsystems to identify clones in.

2 Click Find Clones to identify clones.
3 The color of the subsystems changes to reflect the similar and exact clones identified.

The red highlighting represents exact clones and the different shades of blue
highlighting represent similar clones.

 Enable Component Reuse by Using Clone Detection

3-35

Analyze the Clone Detection Results

After identifying clones, you can analyze the results of the clone detection and make
changes to the model as necessary. To analyze the results:

1 In the Clone Detection Action and Results panel, on the Logs pane, click the
hyperlink.

A new window opens the clone detection results with an integrated report on the
identified clones, the types of clones, the parameters of detection, and the exclusions
in the clone detection.

2 In the Clone Detection Action and Results pane, click the Map Clone Groups to
Library tab.

A list of clone groups are displayed.

3 Checking Systems Interactively

3-36

3 Click the > symbol next to Exact Clone Group 1 to see all of the subsystems that
are exact clones, the number of blocks, and the block differences. Repeat the same
for Similar Clone Group 1 and Similar Clone Group 2.

4 Click the Model Hierarchy tab. Click the hyperlinks to highlight the subsystems that
are present in the model.

5 On the Map Clone Groups to Library tab, expand Similar Clone Group 1 and
click the View Parameter Difference hyperlink.

6 On the Detected Clone Properties panel, click the ex_clone_detection/SS5/G9
hyperlink, which opens the gain block G9 in the subsystem SS5, where you can
access the parameter that are different from the baseline subsystem.

7 Change value of the gain parameter from A to B and click Find Clones. This will
reclassify Similar Clone Group 1 to Exact Clone Group 2 because you
resolved the difference in the subsystems and converted it into an exact clone.

8 Under the Refactor Benefits panel, you can consider the percentage of different
types of clones present.

In the Clone Detection Actions and Results pane, in the Map Clone Groups to
Library tab, select the clones you would like to refactor. Select all the clone groups

 Enable Component Reuse by Using Clone Detection

3-37

for refactoring to reduce 22.5806% of the model reuse.

Replace Clones
1 You may use the default library name or change the name of the library file and its

location on the Map Clone Groups to Library tab before replacing the clones.

3 Checking Systems Interactively

3-38

2 Click Replace Clones.

The model is refactored and the clones are replaced with links to the
newLibraryFile library file in your working directory.

3 You can restore the model to its original configuration with clones by clicking
Restore button found in the clone detector log that was generated on the Logs tab of
the Clone Detector Actions and Results pane.

Identifying and Replacing Clones in Model Libraries
1 Open the library ex_clone_library. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','simulink','examples'))
ex_clone_library

2 Click Settings > Match Patterns with Libraries and select
ex_clone_library.slx. Then click Find Clones.

Note Identifying and refactoring clones in external libraries must be done separately
from the model. During model refactoring only exact clones within the libraries will
be replaced library links.

3 Click Replace Clones.

The model is refactored with the exact clones replaced.

Check the Equivalency of the Model
If you have a Simulink Test license, you can click Check Equivalency. A window opens
and displays that the current model has been successfully refactored into an equivalent
model.

 Enable Component Reuse by Using Clone Detection

3-39

See Also

Related Examples
• “Custom Libraries” (Simulink)
• “Generate Reusable Code from Library Subsystems Shared Across Models”

(Simulink Coder)
• Clone Detector

3 Checking Systems Interactively

3-40

Improve Model Readability by Eliminating Local Data
Store Blocks

You can use the Model Transformer tool to improve model readability by replacing Data
Store Memory, Data Store Read, and Data Store Write blocks with either a direct signal
line, a Delay block, or a Merge block. For bus signals, the tool might also add Bus Creator
or Bus Selector blocks as part of the replacement. Replacing these blocks improves model
readability by making data dependency explicit. The Model Transformer creates a model
with these replacements. The new model has the same functionality as the existing model.

The Model Transformer can replace these data stores:

• For signals that are not buses, if a Data Store Read block executes before a Data Store
Write block, the tool replaces these blocks with a Delay block.

• For signals that are not buses, if a Data Store Write block executes before a Data Store
Read block, the tool replaces these blocks with a direct connection.

• For bus signals, if the write to bus elements executes before the read of the bus, the
tool replaces the Data Store Read and Data Store Write blocks with a direct
connection and a Bus Creator block.

• For bus signals, if the write to the bus executes before the read of bus elements, the
tool replaces the Data Store Read and Data Store Write blocks with a direct
connection and a Bus Selector block.

• For conditionally executed subsystems, the tool replaces the Data Store Read and Data
Store Write blocks with a direct connection and a Merge block. For models in which a
read/write pair crosses an If subsystem boundary and the Write block is inside the
subsystem, the tool might also add an Else subsystem block.

The Model Transformer tool eliminates only local data stores that Data Store Memory
blocks define. The tool does not eliminate global data stores. For the Data Store Memory
block, on the Signal Attributes tab in the block parameters dialog box, you must clear
the Data store name must resolve to Simulink signal object parameter.

Example Model
The model ex_data_store_elimination contains the two local data stores: B and A.
For data store B, there are two Data Store Read blocks and one Data Store Write block.
For data store A, there is one Data Store Write block and one Data Store Read block. The
red numbers represent the sorted execution order.

 Improve Model Readability by Eliminating Local Data Store Blocks

3-41

3 Checking Systems Interactively

3-42

Replace Data Store Blocks
Identify data store blocks that qualify for replacement. Then, create a model that replaces
these blocks with direct signal lines, Delay blocks, or Merge blocks.

1 Open the model ex_data_store_elimination. At the MATLAB command line,
enter:

addpath(fullfile(docroot,'toolbox','simulink','examples'))
ex_data_store_elimination

2 Save the model to your working folder.
3 In the Simulink Editor, from the Analysis menu, select Refactor Model > Model

Transformer. To open the Model Transformer programmatically, at the MATLAB
command prompt, type this command:
mdltransformer('ex_data_store_replacement').

4 In the Transformations folder, select the Eliminate data store blocks check.
5 In the Prefix of refactored model field, specify a prefix for the refactored model.
6 Click the Run This Check button. The top Result table contains hyperlinks to the

Data Store Memory blocks and the corresponding Data Store Read and Data Store
Write blocks that qualify for elimination.

7 Click the Refactor Model button. The bottom Result table contains a hyperlink to
the new model. The tool creates an m2m_ex_data_store_replacement folder. This
folder contains the gen_ex_data_store_replacement.slx model.

 Improve Model Readability by Eliminating Local Data Store Blocks

3-43

3 Checking Systems Interactively

3-44

For local data store A, gen_ex_bus_struct_in_code.slx contains a Delay block in
place of the Data Store Write block and a direct signal connection in place of the Data
Store Read block. For local data store B, gen_ex_bus_struct_in_code.slx contains a
direct signal connection from the Bias block to Out2.

Limitations
The Model Transformer does not replace Data Store Read and Write blocks that meet
these conditions:

• They cross boundaries of conditionally executed subsystems such as Enabled,
Triggered, or Function-Call subsystems and Stateflow Charts.

• They do not complete mutually exclusive branches of If-Action subsystems.
• They cross boundaries of variants.
• They have more than one input or output.
• They access part of an array.
• They execute at different rates.
• They are inside different instances of library subsystems and have a different relative

execution order.

See Also

Related Examples
• “Refactor Models”
• “Data Stores” (Simulink)
• “Data Stores in Generated Code” (Simulink Coder)

 See Also

3-45

Improve Efficiency of Simulation by Optimizing
Prelookup Operation of Lookup Table Blocks

Improve the efficiency of your model simulation by using the Model Transformer tool to
identify n-D Lookup Table blocks that qualify for transformation and replacing them with
Interpolation blocks and shared Prelookup blocks. Eliminating the redundant Prelookup
blocks improves the simulation speed for linear interpolations. The Model Transformer
creates a model with these replacements blocks. This new model has the same
functionality as the original model.

The Model Transformer can replace Lookup Table blocks that meet the following
conditions:

• The same source drives the Lookup Table blocks.
• The Lookup Table blocks share the same breakpoint specification, values, and data

types.
• The Lookup Table blocks share the same algorithm parameters in the block

parameters dialog box.
• The Lookup Table blocks share the same data type for fractions parameters in the

block parameters dialog box.
• The data type of the Lookup Table block fractions and breakpoint are double, single,

int8, uint8, int16, uint16, int32, or uint32.

Example Model
The model mLutOptim contains three Lookup Table blocks: LUT1, LUT2 and LUT3. The
blocks are driven from the same input sources In1 and In2.

3 Checking Systems Interactively

3-46

Merge Prelookup Operation
Identify n-D Lookup Table blocks that qualify for transformation and replace them with a
single shared Prelookup block and multiple Interpolation blocks.

1 Open the model mLutOptim. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','simulink','examples'))mLutOptim
2 Save the model to your working folder.

 Improve Efficiency of Simulation by Optimizing Prelookup Operation of Lookup Table Blocks

3-47

3 In the Simulink Editor, from the Analysis menu, select Refactor Model > Model
Transformer.

4 In the Transformations folder, select the “Transform table lookup into prelookup
and interpolation” check.

5 Select the Skip Lookup Table (n-D) blocks in the libraries from this
transformation option to avoid replacing Lookup Table blocks that are linked to a
library.

6 In the Prefix of refactored model field, specify a prefix for the new refactored
model.

7 Click the Run This Check button. The top Result table contains hyperlinks to the
Lookup Table blocks and the corresponding input port indices.

8 Clear the Candidate Groups that you do not want to transform.
9 Click the Refactor Model button. The Result table contains a hyperlink to the new

model. The table also contains hyperlinks to the shared Prelookup block and
corresponding Interpolation blocks. Those blocks replaced the original Lookup Table
blocks. The tool creates an m2m_mLUTOptim folder. This folder contains the new
gen_mLUTOptim.slx model.

3 Checking Systems Interactively

3-48

The Lookup Table blocks LUT1, LUT2, and LUT3 of gen_mLutOptim.slx have two
shared Prelookup table blocks, LUT1_Prelookup_1 and LUT1_Prelookup_2, one for
each data source. There are also three Interpolation blocks LUT1_InterpND,
LUT2_InterpND, and LUT3_InterpND that replace the Lookup Table blocks.

 Improve Efficiency of Simulation by Optimizing Prelookup Operation of Lookup Table Blocks

3-49

Conditions and Limitations
The Model Transformer cannot replace Lookup Table blocks if:

• A Rate Transition block drives the Lookup Table blocks.
• The Lookup Table blocks are commented-out regions and inactive variants.
• The Lookup Table blocks are masked.

3 Checking Systems Interactively

3-50

• The Output block's data type is set to Inherit:Same as first input.
• The Lookup Table block Interpolation method and Extrapolation method on the

Algorithm pane of the block parameters dialog box is set to Cubic spline.
• The Lookup Table block Input settings on the Algorithm pane of the block

parameters dialog box has Use one input port for all input data selected.

The Lookup Table block Code generation on the Algorithm pane of the block
parameters dialog box has Support tunable table size in code generation selected.

The Model Transformer tool does not replace Lookup Table blocks across the boundaries
of Atomic subsystems, Referenced Models, and library-linked blocks.

See Also

Related Examples
• “Refactor Models”
• “Transform table lookup into prelookup and interpolation”

 See Also

3-51

Model Checks for DO-178C/DO-331 Standard Compliance
You can check that your model or subsystem complies with selected aspects of the
DO-178C safety standard by running the Model Advisor.

To check compliance with DO standards, open the Model Advisor on page 3-5 and run the
checks in By Task > Modeling Standards for DO-178C/DO-331.

For information on the DO-178C Software Considerations in Airborne Systems and
Equipment Certification and related standards, see Radio Technical Commission for
Aeronautics (RTCA).

The table lists the DO-178C/DO-331 checks.

DO-178C/DO-331 Check
Display model version information
Check for Discrete-Time Integrator blocks with initial condition uncertainty
Check root model Inport block specifications
Identify unconnected lines, input ports, and output ports
Check usage of tunable parameters in blocks
Check for Strong Data Typing with Simulink I/O
Check for blocks that have constraints on tunable parameters
Identify questionable subsystem settings
Check bus signals treated as vectors
Check for potentially delayed function-call subsystem return values
Check usage of Merge blocks
Check Stateflow data objects with local scope
Check usage of exclusive and default states in state machines
Identify disabled library links
Identify parameterized library links
Identify unresolved library links
Check for model reference configuration mismatch
Check for parameter tunability information ignored for referenced models

3 Checking Systems Interactively

3-52

https://www.rtca.org/
https://www.rtca.org/

DO-178C/DO-331 Check
Identify requirement links that specify invalid locations within documents
Identify requirement links with missing documents
Identify requirement links with path type inconsistent with preferences
Identify selection-based links having descriptions that do not match their requirements
document text
Check sample times and tasking mode
Check solver for code generation
Check the hardware implementation
Display bug reports for DO Qualification Kit
Display bug reports for Embedded Coder
Display bug reports for Polyspace Code Prover
Display bug reports for Polyspace Code Prover Server
Display bug reports for Polyspace Bug Finder
Display bug reports for Polyspace Bug Finder Server
Display bug reports for Simulink Code Inspector
Display bug reports for Simulink Report Generator
Display bug reports for Simulink Check
Display bug reports for Simulink Coverage
Display bug reports for Simulink Design Verifier
Display bug reports for Simulink Test
Display bug reports for Simulink Requirements
Display bug reports for Simulink

The following are the High-Integrity System Modeling checks that are applicable for the
DO-178C/DO-331 standards.

Model Checks for High Integrity Systems Modeling
You can check that your model or subsystem complies with selected aspects of the High
Integrity System Model safety standard by running the Model Advisor.

 Model Checks for DO-178C/DO-331 Standard Compliance

3-53

To check compliance with High Integrity System Model standards, run the high-integrity
checks from these Model Advisor folders:

• By Task > Modeling Standards for DO-178C/DO-331 > High-Integrity Systems
• By Task > Modeling Standards for IEC 61508 > High-Integrity Systems
• By Task > Modeling Standards for IEC 62304 > High-Integrity Systems
• By Task > Modeling Standards for EN 50128 > High-Integrity Systems
• By Task > Modeling Standards for ISO 26262 > High-Integrity Systems

For information on the High Integrity System Model Software Considerations in Airborne
Systems and Equipment Certification and related standards, see Radio Technical
Commission for Aeronautics (RTCA).

The table lists the High Integrity System Model checks and their corresponding modeling
guidelines. For more information about the High-Integrity Modeling Guidelines, see
“High-Integrity System Modeling” (Simulink).

High Integrity Systems Modeling Checks

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check usage of lookup table blocks “hisl_0033: Usage of Lookup Table blocks”
(Simulink)

Check for inconsistent vector indexing
methods

“hisl_0021: Consistent vector indexing
method” (Simulink)

Check for variant blocks with 'Generate
preprocessor conditionals' active

“hisl_0023: Verification of model and
subsystem variants” (Simulink)

Check for root Inports with missing
properties

“hisl_0024: Inport interface definition”
(Simulink)

Check for Relational Operator blocks that
equate floating-point types

“hisl_0017: Usage of blocks that compute
relational operators (2)” (Simulink)

Check usage of Relational Operator blocks “hisl_0016: Usage of blocks that compute
relational operators” (Simulink)

Check usage of Logical Operator blocks “hisl_0018: Usage of Logical Operator
block” (Simulink)

3 Checking Systems Interactively

3-54

https://www.rtca.org/
https://www.rtca.org/

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check usage of While Iterator blocks “hisl_0006: Usage of While Iterator blocks”
(Simulink)

Check sample time-dependent blocks “hisl_0007: Usage of For Iterator or While
Iterator subsystems” (Simulink)

Check usage of For Iterator blocks “hisl_0008: Usage of For Iterator Blocks”
(Simulink)

Check usage of If blocks and If Action
Subsystem blocks

“hisl_0010: Usage of If blocks and If Action
Subsystem blocks” (Simulink)

Check usage Switch Case blocks and
Switch Case Action Subsystem blocks

“hisl_0011: Usage of Switch Case blocks
and Action Subsystem blocks” (Simulink)

Check safety-related optimization settings
for logic signals

“hisl_0045: Configuration Parameters >
Math and Data Types > Implement logic
signals as Boolean data (vs. double)”
(Simulink)

Check safety-related block reduction
optimization settings

“hisl_0046: Configuration Parameters >
Simulation Target > Block reduction”
(Simulink)

Check safety-related optimization settings
for application lifespan

“hisl_0048: Configuration Parameters >
Math and Data Types > Application lifespan
(days)” (Simulink)

Check safety-related optimization settings
for data initialization

“hisl_0052: Configuration Parameters >
Code Generation > Optimization > Data
initialization” (Simulink)

Check safety-related optimization settings
for data type conversions

“hisl_0053: Configuration Parameters >
Code Generation > Optimization > Remove
code from floating-point to integer
conversions that wraps out-of-range values”
(Simulink)

Check safety-related optimization settings
for division arithmetic exceptions

“hisl_0054: Configuration Parameters >
Code Generation > Optimization > Remove
code that protects against division
arithmetic exceptions” (Simulink)

 Model Checks for DO-178C/DO-331 Standard Compliance

3-55

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check safety-related code generation
settings for comments

“hisl_0038: Configuration Parameters >
Code Generation > Comments” (Simulink)

Check safety-related code generation
interface settings

“hisl_0039: Configuration Parameters >
Code Generation > Interface” (Simulink)

Check safety-related code generation
settings for code style

“hisl_0047: Configuration Parameters >
Code Generation > Code Style” (Simulink)

Check safety-related code generation
identifier settings

“hisl_0049: Configuration Parameters >
Code Generation > Identifiers” (Simulink)

Check usage of Abs blocks “hisl_0001: Usage of Abs block” (Simulink)
Check usage of Math Function blocks (rem
and reciprocal functions)

“hisl_0002: Usage of Math Function blocks
(rem and reciprocal)” (Simulink)

Check usage of Math Function blocks (log
and log10 functions)

“hisl_0004: Usage of Math Function blocks
(natural logarithm and base 10 logarithm)”
(Simulink)

Check usage of Assignment blocks “hisl_0029: Usage of Assignment blocks”
(Simulink)

Check usage of Signal Routing blocks “hisl_0034: Usage of Signal Routing blocks”
(Simulink)

Check for root Inports with missing range
definitions

“hisl_0025: Design min/max specification of
input interfaces” (Simulink)

Check for root Outports with missing range
definitions

“hisl_0026: Design min/max specification of
output interfaces” (Simulink)

Check state machine type of Stateflow
charts

“hisf_0001: State Machine Type” (Simulink)

Check Stateflow charts for transition paths
that cross parallel state boundaries

“hisf_0013: Usage of transition paths
(crossing parallel state boundaries)”
(Simulink)

Check Stateflow charts for ordering of
states and transitions

“hisf_0002: User-specified state/transition
execution order” (Simulink)

Check Stateflow debugging options “hisf_0011: Stateflow debugging settings”
(Simulink)

3 Checking Systems Interactively

3-56

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check Stateflow charts for uniquely defined
data objects

“hisl_0061: Unique identifiers for clarity”
(Simulink)

Check Stateflow charts for strong data
typing

“hisf_0015: Strong data typing (casting
variables and parameters in expressions)”
(Simulink)

Check usage of shift operations for
Stateflow data

“hisf_0064: Shift operations for Stateflow
data to improve code compliance”
(Simulink)

Check assignment operations in Stateflow
charts

“hisf_0065: Type cast operations in
Stateflow to improve code compliance”
(Simulink)

Check Stateflow charts for unary operators “hisf_0211: Protect against use of unary
operators in Stateflow Charts to improve
code compliance” (Simulink)

Check for Strong Data Typing with
Simulink I/O

“hisf_0009: Strong data typing (Simulink
and Stateflow boundary)” (Simulink)

Check for MATLAB Function interfaces with
inherited properties

“himl_0002: Strong data typing at MATLAB
function boundaries” (Simulink)

Check MATLAB Function metrics “himl_0003: Limitation of MATLAB function
complexity” (Simulink)

Check MATLAB Code Analyzer messages “himl_0004: MATLAB Code Analyzer
recommendations for code generation”
(Simulink)

Check safety-related model referencing
settings

“hisl_0037: Configuration Parameters >
Model Referencing” (Simulink)

Check safety-related diagnostic settings for
solvers

“hisl_0043: Configuration Parameters >
Diagnostics > Solver” (Simulink)

Check safety-related solver settings for
simulation time

“hisl_0040: Configuration Parameters >
Solver > Simulation time” (Simulink)

Check safety-related solver settings for
solver options

“hisl_0041: Configuration Parameters >
Solver > Solver options” (Simulink)

 Model Checks for DO-178C/DO-331 Standard Compliance

3-57

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check safety-related solver settings for
tasking and sample-time

“hisl_0042: Configuration Parameters >
Solver > Tasking and sample time options”
(Simulink)

Check safety-related diagnostic settings for
sample time

“hisl_0044: Configuration Parameters >
Diagnostics > Sample Time” (Simulink)

Check safety-related diagnostic settings for
parameters

“hisl_0302: Configuration Parameters >
Diagnostics > Data Validity > Parameters”
(Simulink)

Check safety-related diagnostic settings for
data used for debugging

“hisl_0305: Configuration Parameters >
Diagnostics > Data Validity > Debugging”
(Simulink)

Check safety-related diagnostic settings for
data store memory

“hisl_0013: Usage of data store blocks”
(Simulink)

Check safety-related diagnostic settings for
type conversions

“hisl_0309: Configuration Parameters >
Diagnostics > Type Conversion” (Simulink)

Check safety-related diagnostic settings for
signal connectivity

“hisl_0306: Configuration Parameters >
Diagnostics > Connectivity > Signals”
(Simulink)

Check safety-related diagnostic settings for
bus connectivity

“hisl_0307: Configuration Parameters >
Diagnostics > Connectivity > Buses”
(Simulink)

Check safety-related diagnostic settings
that apply to function-call connectivity

“hisl_0308: Configuration Parameters >
Diagnostics > Connectivity > Function
calls” (Simulink)

Check safety-related diagnostic settings for
compatibility

“hisl_0301: Configuration Parameters >
Diagnostics > Compatibility” (Simulink)

Check safety-related diagnostic settings for
model initialization

“hisl_0304: Configuration Parameters >
Diagnostics > Data Validity > Model
initialization” (Simulink)

Check safety-related diagnostic settings for
model referencing

“hisl_0310: Configuration Parameters >
Diagnostics > Model Referencing”
(Simulink)

3 Checking Systems Interactively

3-58

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check safety-related diagnostic settings for
saving

“hisl_0036: Configuration Parameters >
Diagnostics > Saving” (Simulink)

Check safety-related diagnostic settings for
Merge blocks

“hisl_0303: Configuration Parameters >
Diagnostics > Data Validity > Merge
blocks” (Simulink)

Check safety-related diagnostic settings for
Stateflow

“hisl_0311: Configuration Parameters >
Diagnostics > Stateflow” (Simulink)

Check safety-related optimization settings
for Loop unrolling threshold

“hisl_0051: Configuration Parameters >
Code Generation > Optimization > Loop
unrolling threshold” (Simulink)

Check model object names “hisl_0032: Model object names” (Simulink)
Check for model elements that do not link
to requirements

“hisl_0070: Placement of requirement links
in a model” (Simulink)

Check for inappropriate use of transition
paths

“hisf_0014: Usage of transition paths
(passing through states)” (Simulink)

Check usage of Bitwise Operator block “hisl_0019: Usage of bitwise operations”
(Simulink)

Check data types for blocks with index
signals

“hisl_0022: Data type selection for index
signals” (Simulink)

Check model file name “hisl_0031: Model file names” (Simulink)
Check if/elseif/else patterns in MATLAB
Function blocks

“himl_0006: MATLAB code if / elseif / else
patterns” (Simulink)

Check switch statements in MATLAB
Function blocks

“himl_0007: MATLAB code switch / case /
otherwise patterns” (Simulink)

Check global variables in graphical
functions

“hisl_0062: Global variables in graphical
functions” (Simulink)

Check for length of user-defined object
names

“hisl_0063: Length of user-defined object
names to improve MISRA C:2012
compliance” (Simulink)

Check usage of Merge blocks “hisl_0015: Usage of Merge blocks”
(Simulink)

 Model Checks for DO-178C/DO-331 Standard Compliance

3-59

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check usage of conditionally executed
subsystems

“hisl_0012: Usage of conditionally executed
subsystems” (Simulink)

Check usage of standardized MATLAB
function headers

“himl_0001: Usage of standardized
MATLAB function headers” (Simulink)

Check usage of relational operators in
MATLAB Function blocks

“himl_0008: MATLAB code relational
operator data types” (Simulink)

Check usage of equality operators in
MATLAB Function blocks

“himl_0009: MATLAB code with equal / not
equal relational operators” (Simulink)

Check usage of logical operators and
functions in MATLAB Function blocks

“himl_0010: MATLAB code with logical
operators and functions” (Simulink)

Check type and size of conditional
expressions

“himl_0011: Data type and size of condition
expressions” (Simulink)

Check naming of ports in Stateflow charts “hisf_0016: Stateflow port names”
(Simulink)

Check scoping of Stateflow data objects “hisf_0017: Stateflow data object scoping”
(Simulink)

Check usage of Gain blocks “hisl_0066: Usage of Gain blocks”
(Simulink)

Check usage of bitwise operations in
Stateflow charts

“hisf_0003: Usage of bitwise operations”
(Simulink)

Check data type of loop control variables “hisl_0102: Data type of loop control
variables to improve MISRA C:2012
compliance” (Simulink)

Check configuration parameters for MISRA
C:2012

“hisl_0060: Configuration parameters that
improve MISRA C:2012 compliance”
(Simulink)

Check for blocks not recommended for C/C
++ production code deployment

Check for blocks not recommended for
MISRA C:2012

“hisl_0020: Blocks not recommended for
MISRA C:2012 compliance” (Simulink)

3 Checking Systems Interactively

3-60

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check safety-related optimization settings
for specified minimum and maximum values

“hisl_0056: Configuration Parameters >
Code Generation > Optimization >
Optimize using the specified minimum and
maximum values” (Simulink)

See Also

Related Examples
• “Run Model Advisor Checks and Review Results” on page 3-5

 See Also

3-61

Model Checks for High Integrity Systems Modeling
You can check that your model or subsystem complies with selected aspects of the High
Integrity System Model safety standard by running the Model Advisor.

To check compliance with High Integrity System Model standards, run the high-integrity
checks from these Model Advisor folders:

• By Task > Modeling Standards for DO-178C/DO-331 > High-Integrity Systems
• By Task > Modeling Standards for IEC 61508 > High-Integrity Systems
• By Task > Modeling Standards for IEC 62304 > High-Integrity Systems
• By Task > Modeling Standards for EN 50128 > High-Integrity Systems
• By Task > Modeling Standards for ISO 26262 > High-Integrity Systems

For information on the High Integrity System Model Software Considerations in Airborne
Systems and Equipment Certification and related standards, see Radio Technical
Commission for Aeronautics (RTCA).

The table lists the High Integrity System Model checks and their corresponding modeling
guidelines. For more information about the High-Integrity Modeling Guidelines, see
“High-Integrity System Modeling” (Simulink).

High Integrity Systems Modeling Checks
High Integrity System Model Check Applicable High-Integrity System

Modeling Guidelines
Check usage of lookup table blocks “hisl_0033: Usage of Lookup Table blocks”

(Simulink)
Check for inconsistent vector indexing
methods

“hisl_0021: Consistent vector indexing
method” (Simulink)

Check for variant blocks with 'Generate
preprocessor conditionals' active

“hisl_0023: Verification of model and
subsystem variants” (Simulink)

Check for root Inports with missing
properties

“hisl_0024: Inport interface definition”
(Simulink)

Check for Relational Operator blocks that
equate floating-point types

“hisl_0017: Usage of blocks that compute
relational operators (2)” (Simulink)

3 Checking Systems Interactively

3-62

https://www.rtca.org/
https://www.rtca.org/

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check usage of Relational Operator blocks “hisl_0016: Usage of blocks that compute
relational operators” (Simulink)

Check usage of Logical Operator blocks “hisl_0018: Usage of Logical Operator
block” (Simulink)

Check usage of While Iterator blocks “hisl_0006: Usage of While Iterator blocks”
(Simulink)

Check sample time-dependent blocks “hisl_0007: Usage of For Iterator or While
Iterator subsystems” (Simulink)

Check usage of For Iterator blocks “hisl_0008: Usage of For Iterator Blocks”
(Simulink)

Check usage of If blocks and If Action
Subsystem blocks

“hisl_0010: Usage of If blocks and If Action
Subsystem blocks” (Simulink)

Check usage Switch Case blocks and
Switch Case Action Subsystem blocks

“hisl_0011: Usage of Switch Case blocks
and Action Subsystem blocks” (Simulink)

Check safety-related optimization settings
for logic signals

“hisl_0045: Configuration Parameters >
Math and Data Types > Implement logic
signals as Boolean data (vs. double)”
(Simulink)

Check safety-related block reduction
optimization settings

“hisl_0046: Configuration Parameters >
Simulation Target > Block reduction”
(Simulink)

Check safety-related optimization settings
for application lifespan

“hisl_0048: Configuration Parameters >
Math and Data Types > Application lifespan
(days)” (Simulink)

Check safety-related optimization settings
for data initialization

“hisl_0052: Configuration Parameters >
Code Generation > Optimization > Data
initialization” (Simulink)

Check safety-related optimization settings
for data type conversions

“hisl_0053: Configuration Parameters >
Code Generation > Optimization > Remove
code from floating-point to integer
conversions that wraps out-of-range values”
(Simulink)

 Model Checks for High Integrity Systems Modeling

3-63

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check safety-related optimization settings
for division arithmetic exceptions

“hisl_0054: Configuration Parameters >
Code Generation > Optimization > Remove
code that protects against division
arithmetic exceptions” (Simulink)

Check safety-related code generation
settings for comments

“hisl_0038: Configuration Parameters >
Code Generation > Comments” (Simulink)

Check safety-related code generation
interface settings

“hisl_0039: Configuration Parameters >
Code Generation > Interface” (Simulink)

Check safety-related code generation
settings for code style

“hisl_0047: Configuration Parameters >
Code Generation > Code Style” (Simulink)

Check safety-related code generation
identifier settings

“hisl_0049: Configuration Parameters >
Code Generation > Identifiers” (Simulink)

Check usage of Abs blocks “hisl_0001: Usage of Abs block” (Simulink)
Check usage of Math Function blocks (rem
and reciprocal functions)

“hisl_0002: Usage of Math Function blocks
(rem and reciprocal)” (Simulink)

Check usage of Math Function blocks (log
and log10 functions)

“hisl_0004: Usage of Math Function blocks
(natural logarithm and base 10 logarithm)”
(Simulink)

Check usage of Assignment blocks “hisl_0029: Usage of Assignment blocks”
(Simulink)

Check usage of Signal Routing blocks “hisl_0034: Usage of Signal Routing blocks”
(Simulink)

Check for root Inports with missing range
definitions

“hisl_0025: Design min/max specification of
input interfaces” (Simulink)

Check for root Outports with missing range
definitions

“hisl_0026: Design min/max specification of
output interfaces” (Simulink)

Check state machine type of Stateflow
charts

“hisf_0001: State Machine Type” (Simulink)

Check Stateflow charts for transition paths
that cross parallel state boundaries

“hisf_0013: Usage of transition paths
(crossing parallel state boundaries)”
(Simulink)

3 Checking Systems Interactively

3-64

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check Stateflow charts for ordering of
states and transitions

“hisf_0002: User-specified state/transition
execution order” (Simulink)

Check Stateflow debugging options “hisf_0011: Stateflow debugging settings”
(Simulink)

Check Stateflow charts for uniquely defined
data objects

“hisl_0061: Unique identifiers for clarity”
(Simulink)

Check Stateflow charts for strong data
typing

“hisf_0015: Strong data typing (casting
variables and parameters in expressions)”
(Simulink)

Check usage of shift operations for
Stateflow data

“hisf_0064: Shift operations for Stateflow
data to improve code compliance”
(Simulink)

Check assignment operations in Stateflow
charts

“hisf_0065: Type cast operations in
Stateflow to improve code compliance”
(Simulink)

Check Stateflow charts for unary operators “hisf_0211: Protect against use of unary
operators in Stateflow Charts to improve
code compliance” (Simulink)

Check for Strong Data Typing with
Simulink I/O

“hisf_0009: Strong data typing (Simulink
and Stateflow boundary)” (Simulink)

Check for MATLAB Function interfaces with
inherited properties

“himl_0002: Strong data typing at MATLAB
function boundaries” (Simulink)

Check MATLAB Function metrics “himl_0003: Limitation of MATLAB function
complexity” (Simulink)

Check MATLAB Code Analyzer messages “himl_0004: MATLAB Code Analyzer
recommendations for code generation”
(Simulink)

Check safety-related model referencing
settings

“hisl_0037: Configuration Parameters >
Model Referencing” (Simulink)

Check safety-related diagnostic settings for
solvers

“hisl_0043: Configuration Parameters >
Diagnostics > Solver” (Simulink)

 Model Checks for High Integrity Systems Modeling

3-65

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check safety-related solver settings for
simulation time

“hisl_0040: Configuration Parameters >
Solver > Simulation time” (Simulink)

Check safety-related solver settings for
solver options

“hisl_0041: Configuration Parameters >
Solver > Solver options” (Simulink)

Check safety-related solver settings for
tasking and sample-time

“hisl_0042: Configuration Parameters >
Solver > Tasking and sample time options”
(Simulink)

Check safety-related diagnostic settings for
sample time

“hisl_0044: Configuration Parameters >
Diagnostics > Sample Time” (Simulink)

Check safety-related diagnostic settings for
parameters

“hisl_0302: Configuration Parameters >
Diagnostics > Data Validity > Parameters”
(Simulink)

Check safety-related diagnostic settings for
data used for debugging

“hisl_0305: Configuration Parameters >
Diagnostics > Data Validity > Debugging”
(Simulink)

Check safety-related diagnostic settings for
data store memory

“hisl_0013: Usage of data store blocks”
(Simulink)

Check safety-related diagnostic settings for
type conversions

“hisl_0309: Configuration Parameters >
Diagnostics > Type Conversion” (Simulink)

Check safety-related diagnostic settings for
signal connectivity

“hisl_0306: Configuration Parameters >
Diagnostics > Connectivity > Signals”
(Simulink)

Check safety-related diagnostic settings for
bus connectivity

“hisl_0307: Configuration Parameters >
Diagnostics > Connectivity > Buses”
(Simulink)

Check safety-related diagnostic settings
that apply to function-call connectivity

“hisl_0308: Configuration Parameters >
Diagnostics > Connectivity > Function
calls” (Simulink)

Check safety-related diagnostic settings for
compatibility

“hisl_0301: Configuration Parameters >
Diagnostics > Compatibility” (Simulink)

3 Checking Systems Interactively

3-66

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check safety-related diagnostic settings for
model initialization

“hisl_0304: Configuration Parameters >
Diagnostics > Data Validity > Model
initialization” (Simulink)

Check safety-related diagnostic settings for
model referencing

“hisl_0310: Configuration Parameters >
Diagnostics > Model Referencing”
(Simulink)

Check safety-related diagnostic settings for
saving

“hisl_0036: Configuration Parameters >
Diagnostics > Saving” (Simulink)

Check safety-related diagnostic settings for
Merge blocks

“hisl_0303: Configuration Parameters >
Diagnostics > Data Validity > Merge
blocks” (Simulink)

Check safety-related diagnostic settings for
Stateflow

“hisl_0311: Configuration Parameters >
Diagnostics > Stateflow” (Simulink)

Check safety-related optimization settings
for Loop unrolling threshold

“hisl_0051: Configuration Parameters >
Code Generation > Optimization > Loop
unrolling threshold” (Simulink)

Check model object names “hisl_0032: Model object names” (Simulink)
Check for model elements that do not link
to requirements

“hisl_0070: Placement of requirement links
in a model” (Simulink)

Check for inappropriate use of transition
paths

“hisf_0014: Usage of transition paths
(passing through states)” (Simulink)

Check usage of Bitwise Operator block “hisl_0019: Usage of bitwise operations”
(Simulink)

Check data types for blocks with index
signals

“hisl_0022: Data type selection for index
signals” (Simulink)

Check model file name “hisl_0031: Model file names” (Simulink)
Check if/elseif/else patterns in MATLAB
Function blocks

“himl_0006: MATLAB code if / elseif / else
patterns” (Simulink)

Check switch statements in MATLAB
Function blocks

“himl_0007: MATLAB code switch / case /
otherwise patterns” (Simulink)

Check global variables in graphical
functions

“hisl_0062: Global variables in graphical
functions” (Simulink)

 Model Checks for High Integrity Systems Modeling

3-67

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check for length of user-defined object
names

“hisl_0063: Length of user-defined object
names to improve MISRA C:2012
compliance” (Simulink)

Check usage of Merge blocks “hisl_0015: Usage of Merge blocks”
(Simulink)

Check usage of conditionally executed
subsystems

“hisl_0012: Usage of conditionally executed
subsystems” (Simulink)

Check usage of standardized MATLAB
function headers

“himl_0001: Usage of standardized
MATLAB function headers” (Simulink)

Check usage of relational operators in
MATLAB Function blocks

“himl_0008: MATLAB code relational
operator data types” (Simulink)

Check usage of equality operators in
MATLAB Function blocks

“himl_0009: MATLAB code with equal / not
equal relational operators” (Simulink)

Check usage of logical operators and
functions in MATLAB Function blocks

“himl_0010: MATLAB code with logical
operators and functions” (Simulink)

Check type and size of conditional
expressions

“himl_0011: Data type and size of condition
expressions” (Simulink)

Check naming of ports in Stateflow charts “hisf_0016: Stateflow port names”
(Simulink)

Check scoping of Stateflow data objects “hisf_0017: Stateflow data object scoping”
(Simulink)

Check usage of Gain blocks “hisl_0066: Usage of Gain blocks”
(Simulink)

Check usage of bitwise operations in
Stateflow charts

“hisf_0003: Usage of bitwise operations”
(Simulink)

Check data type of loop control variables “hisl_0102: Data type of loop control
variables to improve MISRA C:2012
compliance” (Simulink)

Check configuration parameters for MISRA
C:2012

“hisl_0060: Configuration parameters that
improve MISRA C:2012 compliance”
(Simulink)

3 Checking Systems Interactively

3-68

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check for blocks not recommended for C/C
++ production code deployment

Check for blocks not recommended for
MISRA C:2012

“hisl_0020: Blocks not recommended for
MISRA C:2012 compliance” (Simulink)

Check safety-related optimization settings
for specified minimum and maximum values

“hisl_0056: Configuration Parameters >
Code Generation > Optimization >
Optimize using the specified minimum and
maximum values” (Simulink)

 Model Checks for High Integrity Systems Modeling

3-69

Model Checks for IEC 61508, IEC 62304, ISO 26262, and
EN 50128 Standard Compliance

You can check that your model or subsystem complies with selected aspects of the
following safety standards by running the Model Advisor:

• IEC 61508-3 Functional safety of electrical/electronic/programmable electronic safety-
related systems - Part 3: Software requirements

• IEC 62304 Medical device software - Software life cycle processes
• ISO 26262-6 Road vehicles - Functional safety - Part 6: Product development: Software

level
• EN 50128 Railway applications - Communications, signalling and processing systems -

Software for railway control and protection systems

To check compliance with these standards, open the Model Advisor on page 3-5 and run
the checks in these folders.

• By Task > Modeling Standards for IEC 61508
• By Task > Modeling Standards for IEC 62304
• By Task > Modeling Standards for ISO 26262
• By Task > Modeling Standards for EN 50128

The table lists the IEC 61508, IEC 62304, ISO 26262, and EN 50128 checks.

IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks
Display configuration management data
Display model metrics and complexity report
Check for unconnected objects
Display bug reports for Embedded Coder
Display bug reports for IEC Certification Kit
Display bug reports for Polyspace Code Prover
Display bug reports for Polyspace Code Prover Server
Display bug reports for Polyspace Bug Finder
Display bug reports for Polyspace Bug Finder Server

3 Checking Systems Interactively

3-70

IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks
Display bug reports for Simulink Design Verifier
Display bug reports for Simulink PLC Coder
Display bug reports for Simulink Check
Display bug reports for Simulink Coverage
Display bug reports for Simulink Test
Display bug reports for Simulink Requirements
Display bug reports for AUTOSAR Blockset

Following are the High-Integrity System Modeling checks that are applicable for the IEC
61508, IEC 62304, ISO 26262, and EN 50128 standards.

Model Checks for High Integrity Systems Modeling
You can check that your model or subsystem complies with selected aspects of the High
Integrity System Model safety standard by running the Model Advisor.

To check compliance with High Integrity System Model standards, run the high-integrity
checks from these Model Advisor folders:

• By Task > Modeling Standards for DO-178C/DO-331 > High-Integrity Systems
• By Task > Modeling Standards for IEC 61508 > High-Integrity Systems
• By Task > Modeling Standards for IEC 62304 > High-Integrity Systems
• By Task > Modeling Standards for EN 50128 > High-Integrity Systems
• By Task > Modeling Standards for ISO 26262 > High-Integrity Systems

For information on the High Integrity System Model Software Considerations in Airborne
Systems and Equipment Certification and related standards, see Radio Technical
Commission for Aeronautics (RTCA).

The table lists the High Integrity System Model checks and their corresponding modeling
guidelines. For more information about the High-Integrity Modeling Guidelines, see
“High-Integrity System Modeling” (Simulink).

 Model Checks for IEC 61508, IEC 62304, ISO 26262, and EN 50128 Standard Compliance

3-71

https://www.rtca.org/
https://www.rtca.org/

High Integrity Systems Modeling Checks

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check usage of lookup table blocks “hisl_0033: Usage of Lookup Table blocks”
(Simulink)

Check for inconsistent vector indexing
methods

“hisl_0021: Consistent vector indexing
method” (Simulink)

Check for variant blocks with 'Generate
preprocessor conditionals' active

“hisl_0023: Verification of model and
subsystem variants” (Simulink)

Check for root Inports with missing
properties

“hisl_0024: Inport interface definition”
(Simulink)

Check for Relational Operator blocks that
equate floating-point types

“hisl_0017: Usage of blocks that compute
relational operators (2)” (Simulink)

Check usage of Relational Operator blocks “hisl_0016: Usage of blocks that compute
relational operators” (Simulink)

Check usage of Logical Operator blocks “hisl_0018: Usage of Logical Operator
block” (Simulink)

Check usage of While Iterator blocks “hisl_0006: Usage of While Iterator blocks”
(Simulink)

Check sample time-dependent blocks “hisl_0007: Usage of For Iterator or While
Iterator subsystems” (Simulink)

Check usage of For Iterator blocks “hisl_0008: Usage of For Iterator Blocks”
(Simulink)

Check usage of If blocks and If Action
Subsystem blocks

“hisl_0010: Usage of If blocks and If Action
Subsystem blocks” (Simulink)

Check usage Switch Case blocks and
Switch Case Action Subsystem blocks

“hisl_0011: Usage of Switch Case blocks
and Action Subsystem blocks” (Simulink)

Check safety-related optimization settings
for logic signals

“hisl_0045: Configuration Parameters >
Math and Data Types > Implement logic
signals as Boolean data (vs. double)”
(Simulink)

3 Checking Systems Interactively

3-72

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check safety-related block reduction
optimization settings

“hisl_0046: Configuration Parameters >
Simulation Target > Block reduction”
(Simulink)

Check safety-related optimization settings
for application lifespan

“hisl_0048: Configuration Parameters >
Math and Data Types > Application lifespan
(days)” (Simulink)

Check safety-related optimization settings
for data initialization

“hisl_0052: Configuration Parameters >
Code Generation > Optimization > Data
initialization” (Simulink)

Check safety-related optimization settings
for data type conversions

“hisl_0053: Configuration Parameters >
Code Generation > Optimization > Remove
code from floating-point to integer
conversions that wraps out-of-range values”
(Simulink)

Check safety-related optimization settings
for division arithmetic exceptions

“hisl_0054: Configuration Parameters >
Code Generation > Optimization > Remove
code that protects against division
arithmetic exceptions” (Simulink)

Check safety-related code generation
settings for comments

“hisl_0038: Configuration Parameters >
Code Generation > Comments” (Simulink)

Check safety-related code generation
interface settings

“hisl_0039: Configuration Parameters >
Code Generation > Interface” (Simulink)

Check safety-related code generation
settings for code style

“hisl_0047: Configuration Parameters >
Code Generation > Code Style” (Simulink)

Check safety-related code generation
identifier settings

“hisl_0049: Configuration Parameters >
Code Generation > Identifiers” (Simulink)

Check usage of Abs blocks “hisl_0001: Usage of Abs block” (Simulink)
Check usage of Math Function blocks (rem
and reciprocal functions)

“hisl_0002: Usage of Math Function blocks
(rem and reciprocal)” (Simulink)

Check usage of Math Function blocks (log
and log10 functions)

“hisl_0004: Usage of Math Function blocks
(natural logarithm and base 10 logarithm)”
(Simulink)

 Model Checks for IEC 61508, IEC 62304, ISO 26262, and EN 50128 Standard Compliance

3-73

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check usage of Assignment blocks “hisl_0029: Usage of Assignment blocks”
(Simulink)

Check usage of Signal Routing blocks “hisl_0034: Usage of Signal Routing blocks”
(Simulink)

Check for root Inports with missing range
definitions

“hisl_0025: Design min/max specification of
input interfaces” (Simulink)

Check for root Outports with missing range
definitions

“hisl_0026: Design min/max specification of
output interfaces” (Simulink)

Check state machine type of Stateflow
charts

“hisf_0001: State Machine Type” (Simulink)

Check Stateflow charts for transition paths
that cross parallel state boundaries

“hisf_0013: Usage of transition paths
(crossing parallel state boundaries)”
(Simulink)

Check Stateflow charts for ordering of
states and transitions

“hisf_0002: User-specified state/transition
execution order” (Simulink)

Check Stateflow debugging options “hisf_0011: Stateflow debugging settings”
(Simulink)

Check Stateflow charts for uniquely defined
data objects

“hisl_0061: Unique identifiers for clarity”
(Simulink)

Check Stateflow charts for strong data
typing

“hisf_0015: Strong data typing (casting
variables and parameters in expressions)”
(Simulink)

Check usage of shift operations for
Stateflow data

“hisf_0064: Shift operations for Stateflow
data to improve code compliance”
(Simulink)

Check assignment operations in Stateflow
charts

“hisf_0065: Type cast operations in
Stateflow to improve code compliance”
(Simulink)

Check Stateflow charts for unary operators “hisf_0211: Protect against use of unary
operators in Stateflow Charts to improve
code compliance” (Simulink)

3 Checking Systems Interactively

3-74

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check for Strong Data Typing with
Simulink I/O

“hisf_0009: Strong data typing (Simulink
and Stateflow boundary)” (Simulink)

Check for MATLAB Function interfaces with
inherited properties

“himl_0002: Strong data typing at MATLAB
function boundaries” (Simulink)

Check MATLAB Function metrics “himl_0003: Limitation of MATLAB function
complexity” (Simulink)

Check MATLAB Code Analyzer messages “himl_0004: MATLAB Code Analyzer
recommendations for code generation”
(Simulink)

Check safety-related model referencing
settings

“hisl_0037: Configuration Parameters >
Model Referencing” (Simulink)

Check safety-related diagnostic settings for
solvers

“hisl_0043: Configuration Parameters >
Diagnostics > Solver” (Simulink)

Check safety-related solver settings for
simulation time

“hisl_0040: Configuration Parameters >
Solver > Simulation time” (Simulink)

Check safety-related solver settings for
solver options

“hisl_0041: Configuration Parameters >
Solver > Solver options” (Simulink)

Check safety-related solver settings for
tasking and sample-time

“hisl_0042: Configuration Parameters >
Solver > Tasking and sample time options”
(Simulink)

Check safety-related diagnostic settings for
sample time

“hisl_0044: Configuration Parameters >
Diagnostics > Sample Time” (Simulink)

Check safety-related diagnostic settings for
parameters

“hisl_0302: Configuration Parameters >
Diagnostics > Data Validity > Parameters”
(Simulink)

Check safety-related diagnostic settings for
data used for debugging

“hisl_0305: Configuration Parameters >
Diagnostics > Data Validity > Debugging”
(Simulink)

Check safety-related diagnostic settings for
data store memory

“hisl_0013: Usage of data store blocks”
(Simulink)

Check safety-related diagnostic settings for
type conversions

“hisl_0309: Configuration Parameters >
Diagnostics > Type Conversion” (Simulink)

 Model Checks for IEC 61508, IEC 62304, ISO 26262, and EN 50128 Standard Compliance

3-75

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check safety-related diagnostic settings for
signal connectivity

“hisl_0306: Configuration Parameters >
Diagnostics > Connectivity > Signals”
(Simulink)

Check safety-related diagnostic settings for
bus connectivity

“hisl_0307: Configuration Parameters >
Diagnostics > Connectivity > Buses”
(Simulink)

Check safety-related diagnostic settings
that apply to function-call connectivity

“hisl_0308: Configuration Parameters >
Diagnostics > Connectivity > Function
calls” (Simulink)

Check safety-related diagnostic settings for
compatibility

“hisl_0301: Configuration Parameters >
Diagnostics > Compatibility” (Simulink)

Check safety-related diagnostic settings for
model initialization

“hisl_0304: Configuration Parameters >
Diagnostics > Data Validity > Model
initialization” (Simulink)

Check safety-related diagnostic settings for
model referencing

“hisl_0310: Configuration Parameters >
Diagnostics > Model Referencing”
(Simulink)

Check safety-related diagnostic settings for
saving

“hisl_0036: Configuration Parameters >
Diagnostics > Saving” (Simulink)

Check safety-related diagnostic settings for
Merge blocks

“hisl_0303: Configuration Parameters >
Diagnostics > Data Validity > Merge
blocks” (Simulink)

Check safety-related diagnostic settings for
Stateflow

“hisl_0311: Configuration Parameters >
Diagnostics > Stateflow” (Simulink)

Check safety-related optimization settings
for Loop unrolling threshold

“hisl_0051: Configuration Parameters >
Code Generation > Optimization > Loop
unrolling threshold” (Simulink)

Check model object names “hisl_0032: Model object names” (Simulink)
Check for model elements that do not link
to requirements

“hisl_0070: Placement of requirement links
in a model” (Simulink)

Check for inappropriate use of transition
paths

“hisf_0014: Usage of transition paths
(passing through states)” (Simulink)

3 Checking Systems Interactively

3-76

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check usage of Bitwise Operator block “hisl_0019: Usage of bitwise operations”
(Simulink)

Check data types for blocks with index
signals

“hisl_0022: Data type selection for index
signals” (Simulink)

Check model file name “hisl_0031: Model file names” (Simulink)
Check if/elseif/else patterns in MATLAB
Function blocks

“himl_0006: MATLAB code if / elseif / else
patterns” (Simulink)

Check switch statements in MATLAB
Function blocks

“himl_0007: MATLAB code switch / case /
otherwise patterns” (Simulink)

Check global variables in graphical
functions

“hisl_0062: Global variables in graphical
functions” (Simulink)

Check for length of user-defined object
names

“hisl_0063: Length of user-defined object
names to improve MISRA C:2012
compliance” (Simulink)

Check usage of Merge blocks “hisl_0015: Usage of Merge blocks”
(Simulink)

Check usage of conditionally executed
subsystems

“hisl_0012: Usage of conditionally executed
subsystems” (Simulink)

Check usage of standardized MATLAB
function headers

“himl_0001: Usage of standardized
MATLAB function headers” (Simulink)

Check usage of relational operators in
MATLAB Function blocks

“himl_0008: MATLAB code relational
operator data types” (Simulink)

Check usage of equality operators in
MATLAB Function blocks

“himl_0009: MATLAB code with equal / not
equal relational operators” (Simulink)

Check usage of logical operators and
functions in MATLAB Function blocks

“himl_0010: MATLAB code with logical
operators and functions” (Simulink)

Check type and size of conditional
expressions

“himl_0011: Data type and size of condition
expressions” (Simulink)

Check naming of ports in Stateflow charts “hisf_0016: Stateflow port names”
(Simulink)

 Model Checks for IEC 61508, IEC 62304, ISO 26262, and EN 50128 Standard Compliance

3-77

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check scoping of Stateflow data objects “hisf_0017: Stateflow data object scoping”
(Simulink)

Check usage of Gain blocks “hisl_0066: Usage of Gain blocks”
(Simulink)

Check usage of bitwise operations in
Stateflow charts

“hisf_0003: Usage of bitwise operations”
(Simulink)

Check data type of loop control variables “hisl_0102: Data type of loop control
variables to improve MISRA C:2012
compliance” (Simulink)

Check configuration parameters for MISRA
C:2012

“hisl_0060: Configuration parameters that
improve MISRA C:2012 compliance”
(Simulink)

Check for blocks not recommended for C/C
++ production code deployment

Check for blocks not recommended for
MISRA C:2012

“hisl_0020: Blocks not recommended for
MISRA C:2012 compliance” (Simulink)

Check safety-related optimization settings
for specified minimum and maximum values

“hisl_0056: Configuration Parameters >
Code Generation > Optimization >
Optimize using the specified minimum and
maximum values” (Simulink)

See Also

Related Examples
• “Run Model Advisor Checks and Review Results” on page 3-5

3 Checking Systems Interactively

3-78

Model Checks for MathWorks Automotive Advisory
Board (MAAB) Guideline Compliance

You can check that your model or subsystem complies with MathWorks Automotive
Advisory Board (MAAB) Guidelines by running the Model Advisor. Navigate to By Task >
Modeling Standards for MAAB and run the checks.

The MAAB involves major automotive OEMs and suppliers in the process of evolving
MathWorks controls, simulation, and code generation products, including Simulink,
Stateflow, and Simulink Coder. An important result of this collaboration has been the
MAAB Control Algorithm Modeling Guidelines.

The table lists the MAAB checks with the applicable MAAB Control Algorithm Modeling
guideline. For JMAAB checks, see “Model Checks for Japan MATLAB Automotive Advisory
Board (JMAAB) Guideline Compliance” on page 3-85.

By Task >
Modeling
Standards for
MAAB
subfolder

Model Advisor Check Guideline from the MAAB
Control Algorithm Modeling
Guidelines, Version 3.0

Naming
Conventions

Check file names ar_0001: Filenames
Check folder names ar_0002: Directory names
Check subsystem names jc_0201: Usable characters for

Subsystem names
Check port block names jc_0211: Usable characters for

Inport blocks and Outport blocks
Check character usage in signal
labels

jc_0221: Usable characters for
signal line names

Check character usage in block
names

jc_0231: Usable characters for
block names

Check Simulink bus signal names na_0030: Usable characters for
Simulink Bus names

Model
Architecture

Check for mixing basic blocks and
subsystems

db_0143: Similar block types on
the model levels

 Model Checks for MathWorks Automotive Advisory Board (MAAB) Guideline Compliance

3-79

https://www.mathworks.com/solutions/automotive/standards/maab.html

By Task >
Modeling
Standards for
MAAB
subfolder

Model Advisor Check Guideline from the MAAB
Control Algorithm Modeling
Guidelines, Version 3.0

Check unused ports in Variant
Subsystems

na_0020: Number of inputs to
variant subsystems

Check use of default variants na_0036: Default variant
Check use of single variable
variant conditionals

na_0037: Use of single variable
variant conditionals

Model
Configuration
Options

Check Implement logic signals as
Boolean data (vs. double)

jc_0011: Optimization parameters
for Boolean data types

Check model diagnostic
parameters

jc_0021: Model diagnostic settings

Simulink Check for Simulink diagrams using
nonstandard display attributes

na_0004: Simulink model
appearance

Check font formatting db_0043: Simulink font and font
size

Check positioning and
configuration of ports

db_0042: Port block in Simulink
models

Check visibility of block port
names

na_0005: Port block name visibility
in Simulink models

Check display for port blocks jc_0081: Icon display for Port
block

Check whether block names
appear below blocks

db_0142: Position of block names

Check the display attributes of
block names

jc_0061: Display of block names

Check position of Trigger and
Enable blocks

db_0146: Triggered, enabled,
conditional Subsystems

Check for nondefault block
attributes

db_0140: Display of basic block
parameters

Check for matching port and
signal names

jm_0010: Port block names in
Simulink models

3 Checking Systems Interactively

3-80

By Task >
Modeling
Standards for
MAAB
subfolder

Model Advisor Check Guideline from the MAAB
Control Algorithm Modeling
Guidelines, Version 3.0

Check Trigger and Enable block
names

jc_0281: Naming of Trigger Port
block and Enable Port block

Check signal line labels na_0008: Display of labels on
signals

Check for propagated signal labels na_0009: Entry versus propagation
of signal labels

Check for unconnected ports and
signal lines

db_0081: Unconnected signals,
block inputs and block outputs

Check for prohibited blocks in
discrete controllers

jm_0001: Prohibited Simulink
standard blocks inside controllers

Check for prohibited sink blocks hd_0001: Prohibited Simulink
sinks

Check scope of From and Goto
blocks

na_0011: Scope of Goto and From
blocks

Check usage of Switch blocks jc_0141: Use of the Switch block
Check usage of Relational
Operator blocks

jc_0131: Use of Relational
Operator block

Check for indexing in blocks db_0112: Indexing
Check usage of buses and Mux
blocks

na_0010: Grouping data flows into
signals

Check usage of tunable
parameters in blocks

db_0110: Tunable parameters in
basic blocks

Check orientation of Subsystem
blocks

jc_0111: Direction of Subsystem

Check fundamental logical and
numerical operations

na_0002: Appropriate
implementation of fundamental
logical and numerical operations

Check usage of merge blocks na_0032: Use of merge blocks

 Model Checks for MathWorks Automotive Advisory Board (MAAB) Guideline Compliance

3-81

By Task >
Modeling
Standards for
MAAB
subfolder

Model Advisor Check Guideline from the MAAB
Control Algorithm Modeling
Guidelines, Version 3.0

Check logical expressions in 'If'
blocks

na_0003: Simple logical
expressions in If Condition block

Check Simulink signal appearance db_0032: Simulink signal
appearancedb_0032: Simulink
signal appearance

Check usage of enumerated values na_0031: Definition of default
enumerated valuena_0031:
Definition of default enumerated
value

Check usage of Goto and From
blocks between Subsystems

jc_0171: Maintaining signal flow
when using Goto and From blocks

Check usage of non-compliant
blocks

na_0027: Use of only standard
library blocks

Stateflow Check usage of exclusive and
default states in state machines

db_0137: States in state machines

Check transition orientations in
flow charts

db_0132: Transitions in flow
charts

Check entry formatting in State
blocks in Stateflow charts

jc_0501: Format of entries in a
State block

Check return value assignments in
Stateflow graphical functions

jc_0511: Setting the return value
from a graphical function

Check default transition placement
in Stateflow charts

jc_0531: Placement of the default
transition

Check for Strong Data Typing with
Simulink I/O

db_0122: Stateflow and Simulink
interface signals and parameters

Check Stateflow data objects with
local scope

db_0125: Scope of internal signals
and local auxiliary variables

Check usage of return values from
Stateflow graphical functions

jc_0521: Use of the return value
from graphical functions

3 Checking Systems Interactively

3-82

By Task >
Modeling
Standards for
MAAB
subfolder

Model Advisor Check Guideline from the MAAB
Control Algorithm Modeling
Guidelines, Version 3.0

Check for MATLAB expressions in
Stateflow charts

db_0127: MATLAB commands in
Stateflow

Check for pointers in Stateflow
charts

jm_0011: Pointers in Stateflow

Check for event broadcasts in
Stateflow charts

jm_0012: Event broadcasts

Check transition actions in
Stateflow charts

db_0151: State machine patterns
for transition actions

Check for bitwise operations in
Stateflow charts

na_0001: Bitwise Stateflow
operators

Check usage of unary minus
operations in Stateflow charts

jc_0451: Use of unary minus on
unsigned integers in Stateflow

Check for comparison operations
in Stateflow charts

na_0013: Comparison operation in
Stateflow

Check usage of floating-point
expressions in Stateflow charts

jc_0481: Use of hard equality
comparisons for floating point
numbers in Stateflow

Check for names of Stateflow ports
and associated signals

db_0123: Stateflow port names

Check nested states in Stateflow
charts

na_0038: Levels in Stateflow
charts

Check use of Simulink in Stateflow
charts

na_0039: Use of Simulink in
Stateflow charts

Check number of Stateflow states
per container

na_0040: Number of states per
container

Check for Stateflow transition
appearance

db_0129: Stateflow transition
appearance

Check reuse of Variables within a
Stateflow scope

jc_0491: Reuse of variables within
a single Stateflow scope

 Model Checks for MathWorks Automotive Advisory Board (MAAB) Guideline Compliance

3-83

By Task >
Modeling
Standards for
MAAB
subfolder

Model Advisor Check Guideline from the MAAB
Control Algorithm Modeling
Guidelines, Version 3.0

MATLAB
Functions and
Code

Check input and output settings of
MATLAB Functions

na_0034: MATLAB Function block
input/output settings

Check MATLAB Function metrics na_0016: Source lines of MATLAB
Functions

na_0018: Number of nested if/else
and case statement

Check MATLAB code for global
variables

na_0024: Global Variables

Check the number of function calls
in MATLAB Function blocks

na_0017: Number of called
function levels

Check usage of restricted variable
names

na_0019: Restricted Variable
Names

Check usage of character vector
inside MATLAB Function block

na_0021: Strings

Check usage of recommended
patterns for Switch/Case
statements

na_0022: Recommended patterns
for Switch/Case statements

See Also

Related Examples
• “Run Model Advisor Checks and Review Results” on page 3-5

3 Checking Systems Interactively

3-84

Model Checks for Japan MATLAB Automotive Advisory
Board (JMAAB) Guideline Compliance

You can check that your model or subsystem complies with Japan MATLAB Automotive
Advisory Board (JMAAB) guidelines by running the Model Advisor. Navigate to By Task >
Modeling Standards for JMAAB and run the checks.

The JMAAB involves major automotive OEMs and suppliers in the process of evolving
MathWorks controls, simulation, and code generation products, including Simulink,
Stateflow, and Simulink Coder. An important result of this collaboration has been the
Control Algorithm Modeling Guidelines (JMAAB), Version 5.1.

The table lists the JMAAB checks with the applicable JMAAB Control Algorithm Modeling
guideline.

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 5.1

Naming
Conventions

Check file names ar_0001:
Usable
characters for
file names

Check folder names ar_0002:
Usable
characters for
folder names

Check subsystem names jc_0201: Usable
characters for
Subsystem
names

 Model Checks for Japan MATLAB Automotive Advisory Board (JMAAB) Guideline Compliance

3-85

https://www.mathworks.com/solutions/automotive/standards/maab.html

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 5.1

Check port block names jc_0211: Usable
characters for
Inport block
and Outport
block

Check character usage in block names jc_0231: Usable
characters for
block names

Check usable characters for signal names and bus
names

jc_0222: Usable
characters for
signal/bus
names

Check usable characters for parameter names jc_0232: Usable
characters for
parameter
names

Check length of model file name jc_0241: Length
restrictions for
model file
names

Check length of folder name at every level of model
path

jc_0242: Length
restrictions for
folder names

Check length of subsystem names jc_0243: Length
restrictions for
subsystem
names

3 Checking Systems Interactively

3-86

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 5.1

Check length of Inport and Outport names jc_0244: Length
restrictions for
Inport and
Outport names

Check length of signal and bus names jc_0245: Length
restrictions for
signal and bus
names

Check length of parameter names jc_0246: Length
restrictions for
parameter
names

Check length of block names jc_0247: Length
restrictions for
block names

Model
Architecture

Check for mixing basic blocks and subsystems db_0143: Usage
block types in
model
hierarchy

Model
Configuration
Options

Check Implement logic signals as Boolean data (vs.
double)

jc_0011:
Optimization
parameters for
Boolean data
types

Check diagnostic settings for incorrect calculation
results

jc_0806:
Detecting
incorrect
calculation
results

 Model Checks for Japan MATLAB Automotive Advisory Board (JMAAB) Guideline Compliance

3-87

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 5.1

Simulink Check for Simulink diagrams using nonstandard
display attributes

na_0004:
Simulink model
appearance
settings

Check font formatting db_0043: Model
font and font
size

Check positioning and configuration of ports db_0042: Usage
of Inport and
Outport blocks

Check whether block names appear below blocks db_0142:
Position of
block names

Check the display attributes of block names jc_0061:
Display of block
names

Check position of Trigger and Enable blocks db_0146: Block
layout in
conditional
subsystems

Check for nondefault block attributes db_0140:
Display of block
parameters

Check trigger signal names jc_0281:
Trigger signal
names

Check for unconnected ports and signal lines db_0081:
Unconnected
signals / block

3 Checking Systems Interactively

3-88

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 5.1

Check usage of Switch blocks jc_0141: Use of
the Switch
block

Check usage of Relational Operator blocks jc_0131: Usage
of Relational
Operators

Check for indexing in blocks db_0112: Usage
of index

Check usage of tunable parameters in blocks db_0110:
Guidelines for
block
parameters

Check signal line labels jc_0008:
Definition of
Signal labels

Check for propagated signal labels jc_0009: Signal
name
propagation

Check usage of Discrete-Time Integrator block jc_0627:
Guideline for
using the
Discrete-Time
Integrator
block

Check settings for data ports in Multiport Switch
blocks

jc_0630: Usage
of Multiport
Switch block

Check usage of fixed-point data type with non-zero
bias

jc_0643: Fixed-
point setting

 Model Checks for Japan MATLAB Automotive Advisory Board (JMAAB) Guideline Compliance

3-89

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 5.1

Check input and output datatype for Switch blocks jc_0650: Block
input/output
data type with
switching
function

Check signs of input signals in product blocks jc_0611: Input
signal for
multiplication
and division
blocks

Check Signed Integer Division Rounding mode jc_0642:
Integer
rounding mode
setting

Check type setting by data objects jc_0644:
Guideline for
type setting

Check usage of the Saturation blocks jc_0628:
Guideline for
using the
Saturation
Block

Check usage of Merge block jc_0659: Usage
restrictions of
signal lines
inputted to
Merge block

3 Checking Systems Interactively

3-90

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 5.1

Check usage of Memory and Unit Delay blocks jc_0623: Use of
continuous-time
delay blocks
and discrete-
time blocks

Check block orientation jc_0110:
Direction of
block

Check if blocks are shaded in the model jc_0604: Block
shading

Check operator order of Product blocks jc_0610:
Operator order
for
multiplication
and division
blocks

Check icon shape of Logical Operator blocks jc_0621:
Guideline for
using the
Logical
Operator block

Check if tunable block parameters are defined as
named constants

jc_0645:
Parameter
definition for
calibration

Check default/else case in Switch Case blocks and If
blocks

jc_0656: Usage
of Conditional
Control block

 Model Checks for Japan MATLAB Automotive Advisory Board (JMAAB) Guideline Compliance

3-91

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 5.1

Check usage of Lookup Tables jc_0626:
Guideline for
using the
Lookup Table
block

Check for parentheses in Fcn block expressions jc_0622:
Guideline for
using the Fcn
block

Check undefined initial output for conditional
subsystems

jc_0640: Initial
value settings
for Outport
blocks in
conditional
subsystems

Check for avoiding algebraic loops between
subsystems

jc_0653: Delay
block layout in
feedback loops

Comparing floating point types in Simulink jc_0800:
Comparing
floating-point
types in
Simulink

Check duplication of Simulink data names jc_0791:
Duplicate
definition data
names

Check unused data in Simulink Model jc_0792:
Unused data

3 Checking Systems Interactively

3-92

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 5.1

Check output data type of operation blocks jc_0651:
Guideline for
implementing a
type conversion

Check Model Description jc_0603: Model
description

Check for consistency in model element names jc_0602:
Consistency in
model element
names

Check for sample time setting jc_0641:
Sample time
setting

Stateflow Check transition orientations in flow charts db_0132:
Transitions in
Flow Charts

Check return value assignments in Stateflow
graphical functions

jc_0511:
Setting the
return value
from a
graphical
function

Check default transition placement in Stateflow
charts

jc_0531:
Default
transition

 Model Checks for Japan MATLAB Automotive Advisory Board (JMAAB) Guideline Compliance

3-93

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 5.1

Check for Strong Data Typing with Simulink I/O db_0122:
Stateflow and
Simulink
interface
signals and
parameters

Check Stateflow data objects with local scope db_0125:
Stateflow local
data

Check for MATLAB expressions in Stateflow charts db_0127:
Limitation on
MATLAB
commands in
Stateflow
blocks

Check for pointers in Stateflow charts jm_0011:
Pointers in
Stateflow

Check for event broadcasts in Stateflow charts jm_0012: Usage
restrictions of
events and
broadcasting
events

Check for bitwise operations in Stateflow charts na_0001:
Standard usage
of Stateflow
operators

3 Checking Systems Interactively

3-94

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 5.1

Check for unary minus operations on unsigned
integers in Stateflow charts

jc_0451: Use of
unary minus on
unsigned
integers

Check usage of Stateflow comments jc_0738: Usage
of Stateflow
comments

Check prohibited comparison operation of logical
type signals

jc_0655:
Prohibition of
logical value
comparison in
Stateflow

Check usage of internal transitions in Stateflow states jc_0763: Usage
of multiple
internal
transitions

Check usage of transition conditions in Stateflow
transitions

jc_0772:
Execution order
and transition
conditions of
transition lines

Check uniqueness of Stateflow State and Data names jc_0732:
Distinction
between state
names, data
names, and
event names

 Model Checks for Japan MATLAB Automotive Advisory Board (JMAAB) Guideline Compliance

3-95

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 5.1

Check uniqueness of State names jc_0730:
Unique state
name in
Stateflow
blocks

Check usage of parentheses in Stateflow transitions jc_0752: Format
of condition
action in
transition label

Check prohibited combination of state action and flow
chart

jc_0762:
Prohibited of
state action and
flow chart
combination

Check condition actions and transition actions in
Stateflow

jc_0753:
Condition
actions and
transition
actions in
Stateflow

Check usable number for first index jc_0701: Usable
number for first
index

Check usage of State names jc_0731: State
name format

Check execution timing for default transition path jc_0712:
Execution
timing for
default
transition path

3 Checking Systems Interactively

3-96

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 5.1

Check repetition of Action types jc_0734:
Number of
state action
types

Check for unused data in Stateflow Charts jc_0700:
Unused data in
Stateflow block

Check updates to variables used in state transition
conditions

jc_0741: Timing
to update data
used in state
chart transition
conditions

Check starting point of internal transition in
Stateflow

jc_0760:
Starting point
of internal
transition

Check for parallel Stateflow state used for grouping jc_0721: Usage
of parallel
states

Check scope of data in parallel states jc_0722: Local
data definition
in parallel
states

Check indentation of code in Stateflow states jc_0736:
Uniform
indentations in
Stateflow
blocks

 Model Checks for Japan MATLAB Automotive Advisory Board (JMAAB) Guideline Compliance

3-97

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 5.1

Check for usage of text inside states jc_0739:
Guidelines for
describing texts
inside states

Check for unexpected backtracking in state
transitions

jc_0751 :
Backtracking
prevention in
state transition

Check for unconnected objects in Stateflow Charts jc_0797:
Unconnected
transition
lines / states /
connective
junctions

Check placement of Label String in Transitions jc_0770:
Transition label
layout

Check Stateflow chart action language jc_0790: Chart
action language

Check usable characters for Stateflow data names jc_0795: Usable
characters for
Stateflow data
names

Check length of Stateflow data name jc_0796: Length
restriction for
Stateflow data
names

3 Checking Systems Interactively

3-98

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 5.1

Check usage of transitions to external states jc_0723:
Prohibited
direct transition
from external
state to child
state

Check order of state action types jc_0733: Order
of state action
types

Check usage of numeric literals in Stateflow jc_0702: Use of
named
Stateflow
parameters/
constants

Check position of comments in transition labels jc_0771:
Comment
position in
transition labels

Check terminal junctions in Stateflow jc_0775:
Terminating
junctions in
Flow Charts

Check for implicit type casting in Stateflow jc_0802:
Prohibited use
of implicit type
casting in
Stateflow

 Model Checks for Japan MATLAB Automotive Advisory Board (JMAAB) Guideline Compliance

3-99

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 5.1

Check if state action type 'exit' is used in the model jc_0740:
Limitation on
use of exit state
action

Check for use of C-style comment symbols jc_0801:
Prohibited use
of the /* and */
comment
symbols

Check usage of unconditional transitions in flow
charts

jc_0773:
Unconditional
transition of a
flow chart

Check for comments in unconditional transitions jc_0774:
Comments for
through
transition

MATLAB
Functions

Check input and output settings of MATLAB
Functions

na_0034:
MATLAB
Function block
input/output
settings

Check MATLAB code for global variables na_0024:
Shared data in
MATLAB
functions

3 Checking Systems Interactively

3-100

See Also

Related Examples
• “Run Model Advisor Checks and Review Results” on page 3-5

 See Also

3-101

Model Checks for MISRA C:2012 Compliance
To check that your model or subsystem has a likelihood of generating MISRA C:2012
compliant code, open the Model Advisor on page 3-5 and run the checks in By Task >
Modeling Guidelines for MISRA C:2012:

• Check usage of Assignment blocks
• Check for blocks not recommended for MISRA C:2012
• Check for unsupported block names
• Check configuration parameters for MISRA C:2012
• Check for equality and inequality operations on floating-point values
• Check for bitwise operations on signed integers
• Check for recursive function calls
• Check for switch case expressions without a default case
• Check for blocks not recommended for C/C++ production code deployment
• Check for missing error ports for AUTOSAR receiver interfaces
• Check for missing const qualifiers in model functions
• Check integer word length
• Check bus object names that are used as bus element names

See Also

Related Examples
• “Run Model Advisor Checks and Review Results” on page 3-5

3 Checking Systems Interactively

3-102

Model Checks for Secure Coding (CERT C, CWE, and
ISO/IEC TS 17961 Standards)

To check that your code complies with the CERT C, CWE, and ISO/IEC TS 17961
(Embedded Coder) secure coding standards, open the Model Advisor on page 3-5 and run
the checks in By Task > Modeling Guidelines for Secure Coding (CERT C, CWE,
ISO/IEC TS 17961):

• Check configuration parameters for secure coding standards
• Check for blocks not recommended for C/C++ production code deployment
• Check for blocks not recommended for secure coding standards
• Check usage of Assignment blocks
• Check for switch case expressions without a default case
• Check for bitwise operations on signed integers
• Check for equality and inequality operations on floating-point values
• Check integer word length
• Detect Dead Logic
• Detect Integer Overflow
• Detect Division by Zero
• Detect Out Of Bound Array Access
• Detect Violation of Specified Minimum and Maximum Values

See Also

Related Examples
• “Run Model Advisor Checks and Review Results” on page 3-5

 Model Checks for Secure Coding (CERT C, CWE, and ISO/IEC TS 17961 Standards)

3-103

Model Checks for Requirements Links
To check that every requirements link in your model has a valid target in a requirements
document, from the Simulink Toolstrip, open the Requirements app. Click Check
Consistency to run the Requirements Consistency Checking checks in the Model Advisor.

In the Model Advisor, the requirements consistency checks are available in:

• By Product > Simulink Requirements > Requirements Consistency
• By Task > Requirements Consistency Checking

For more information about these Model Advisor checks, see “Requirements Consistency
Checks” (Simulink Requirements)

When modeling for high-integrity systems, to check that model elements link to
requirement documents, run Check for model elements that do not link to requirements.

See Also

Related Examples
• “Validate Requirements Links in a Model” (Simulink Requirements)
• “Run Model Advisor Checks and Review Results” on page 3-5
• “High-Integrity System Modeling” (Simulink)

3 Checking Systems Interactively

3-104

Generate Model Advisor Reports
By default, when the Model Advisor runs checks, it generates an HTML report of check
results in the slprj/modeladvisor/model_name folder. On Windows® platforms, you
can generate Model Advisor reports in HTML, Adobe® PDF, and Microsoft Word .docx
formats.

The beginning of the Model Advisor reports contain the:

• Model name
• Simulink version
• System
• Treat as Referenced Model
• Model version
• Current run

Generate Results Report When Executing Model Advisor
Checks
Use these steps to generate a Model Advisor report when executing the checks. This
report is in HTML format.

1 In the left pane of the Model Advisor, select the checks you want to run.
2 Click on the folder that contains the checks and, in the right pane of the Model

Advisor, select Show report after run.
3 Click Run Selected Checks. When complete, the Model Advisor automatically opens

an HTML version of the report.
4 To save, right-click on the report and select Save As

Generate Results Report After Executing Model Advisor
Checks
To generate a Model Advisor report in Adobe PDF or Microsoft Word:

1 In the left pane of the Model Advisor, select the checks you want to run. Click on the
folder that contains the checks and, in the right pane of the Model Advisor, select
Run Selected Checks.

 Generate Model Advisor Reports

3-105

2 When complete, reselect the folder and click Generate Report in the right pane of
the Model Advisor.

3 In the Generate Model Advisor Report dialog box:

• Enter the path to the folder where you want to generate the report.
• Provide a file name.
• Use File format to select HTML, PDF, or Word.

4 Click OK. The Model Advisor generates the report and saves it to the designated
location. If you selected View report after generation, the report opens
automatically.

Modify Template for Model Advisor Check Results Report
If you have a MATLAB Report Generator license, you can modify the default template that
the Model Advisor uses to generate the report in PDF or Microsoft Word.

The default template contains fields that the Model Advisor uses to populate the
generated report with information about the analysis. If you want your Model Advisor
report to contain the analysis information, do not delete the fields. When the Model
Advisor generate the report, analysis information overrides the text that you enter in the
template field.

Template Field In generated report, displays
ModelName Model name
SimulinkVersion Simulink version
SystemName System name
TreatAsMdlRef Whether or not model is treated as a referenced model
ModelVersion Model version
CurrentRun Model Advisor analysis time stamp
PassCount Number of checks that pass
FailCount Number of checks that fail
WarningCount Number of checks that cause a warning
NrunCount Number of checks that did not run
TotalCount Total number of checks

3 Checking Systems Interactively

3-106

Template Field In generated report, displays
CheckResults Results for each check

This example shows how to add a header to a PDF version of a Model Advisor report.

1 Using Microsoft Word, open the default template matlabroot/toolbox/
simulink/simulink/modeladvisor/resources/templates/default.dotx.

2 Rename and save the template default.dotx to a writable location. For example,
save template default.dotx to C:/work/ma_format/mytemplate.dotx.

3 In the template C:/work/ma_format/mytemplate.dotx file, add a header. For
example, in the template header, add the text My Custom Header. Save the
template as a Microsoft Word .dotx file.

4 In the Model Advisor window Report pane, click Generate Report.
5 In the Generate Model Advisor Report dialog box:

• Enter the path to the folder where you want to generate the report and provide a
file name.

• Set File format to PDF.
• Select View report after generation.

 Generate Model Advisor Reports

3-107

• Set Report template to C:\work\ma_format\mytemplate.dotx.
6 Click OK. The Model Advisor generates the report in PDF format with the custom

header.

See Also

Related Examples
• “Save and View Model Advisor Check Reports” (Simulink)
• “Customize Microsoft Word Component Templates” (MATLAB Report Generator)
• “Run Model Advisor Checks and Review Results” on page 3-5

3 Checking Systems Interactively

3-108

Check Systems Programmatically

4

Checking Systems Programmatically
The Simulink Check product includes a programmable interface for scripting and for
command-line interaction with the Model Advisor. Using this interface, you can:

• Create scripts and functions for distribution that check one or more systems using the
Model Advisor.

• Run the Model Advisor on multiple systems in parallel on multicore machines
(requires a Parallel Computing Toolbox™ license).

• Check one or more systems using the Model Advisor from the command line.
• Archive results for reviewing at a later time.

To define the workflow for running multiple checks on systems:

1 Specify a list of checks to run. Do one of the following:

• Create a Model Advisor configuration file that includes only the checks that you
want to run.

• Create a list of check IDs.
2 Specify a list of systems to check.
3 Run the Model Advisor checks on the list of systems using the ModelAdvisor.run

function.
4 Archive and review the results of the run.

See Also
ModelAdvisor.run

Related Examples
• “Archive and View Results” on page 4-7

More About
• “Organize Checks and Folders Using the Model Advisor Configuration Editor” on

page 8-5

4 Check Systems Programmatically

4-2

Create a Function for Checking Multiple Systems
You can create a function to programmatically run multiple checks on a model. The
function returns the number of failures and warnings.

1 In the MATLAB window, select New > Function.
2 Save the file as run_configuration.m.
3 In the function, right-click on untitled and select Replace function name by file

name. The function name is updated to run_configuration.
function [outputArg1, outputArg2] = run_configuration(inputArg1,inputArg2)

4 Define the output and input arguments. For the output arguments, press Shift-Enter
after entering each value to automatically update allinlining instances in the function.

• output_Arg1 as fail
• output_Arg2 as warn
• inputArg1, inputArg2 to SysList

function [fail, warn] = run_configuration(SysList)
fail = inputArg1;
warn = inputArg2;

5 Inside the function, specify the list of checks to run using the example Model Advisor
configuration file:
fileName = 'slvnvdemo_mdladv_config.mat';

6 Call the ModelAdvisor.run function:
SysResultObjArray = ModelAdvisor.run(SysList,'Configuration',fileName);

7 Determine the number of checks that return warnings and failures:
fail = 0;
warn = 0;

for i=1:length(SysResultObjArray)
 fail = fail + SysResultObjArray{i}.numFail;
 warn = warn + SysResultObjArray{i}.numWarn;

The function should now look like this:
function [fail, warn] = run_configuration(SysList)

%RUN_CONFIGURATION Check systems with Model Advsior
% Check systems given as input and return number of warnings and
% failures.

 Create a Function for Checking Multiple Systems

4-3

fileName = 'slvnvdemo_mdladv_config.mat';
fail = 0;
warn = 0;

SysResultObjArray = ModelAdvisor.run(SysList,'Configuration',fileName);

for i=1:length(SysResultObjArray)
 fail = fail + SysResultObjArray{i}.numFail;
 warn = warn + SysResultObjArray{i}.numWarn;
end
end

8 Save the function.
9 Test the function. In the MATLAB Command Window, run run_configuration.m on

the sldemo_auto_climatecontrol/Heater Control subsystem:
[failures, warnings] = run_configuration(...
 'sldemo_auto_climatecontrol/Heater Control');

10 Review the results. Click the Summary Report link to open the Model Advisor
Command-Line Summary report.

See Also
ModelAdvisor.run

Related Examples
• “Create a Function for Checking Multiple Systems in Parallel” on page 4-5

4 Check Systems Programmatically

4-4

Create a Function for Checking Multiple Systems in
Parallel

Checking multiple systems in parallel reduces the processing time required by the Model
Advisor to check multiple systems. If you have the Parallel Computing Toolbox license,
you can check multiple systems in parallel on a multicore host machine.

The Parallel Computing Toolbox does not support 32-bit Windows machines.

Each parallel process runs checks on one model at a time. In parallel mode, load the
model data from the model workspace or data dictionary. The Model Advisor in parallel
mode does not support model data in the base workspace.

1 In the MATLAB window, select New > Function.
2 Save the file as run_fast_configuration.m.
3 In the function, right-click on untitled and select Replace function name by file

name. The function name is updated to run_fast_configuration
function [outputArg1, outputArg2] = run_fast_configuration(inputArg1,inputArg2)

4 Define the output and input arguments. For the output arguments, press Shift-Enter
after entering each value to automatically update all instances in the function.

• output_Arg1 as fail
• output_Arg2 as warn
• inputArg1, inputArg2 to SysList

function [fail, warn] = run_fast_configuration(SysList)
fail = inputArg1;
warn = inputArg2;

5 Inside the function, specify the list of checks to run using the example Model Advisor
configuration file:
fileName = 'slvnvdemo_mdladv_config.mat';

6 Call the ModelAdvisor.run function and set 'ParallelMode' to 'On'.
SysResultObjArray = ModelAdvisor.run(SysList,'Configuration',fileName,...
 'ParallelMode','On');

7 Determine the number of checks that return warnings and failures:
fail = 0;
warn = 0;

 Create a Function for Checking Multiple Systems in Parallel

4-5

for i=1:length(SysResultObjArray)
 fail = fail + SysResultObjArray{i}.numFail;
 warn = warn + SysResultObjArray{i}.numWarn;

The function should now look like this:
function [fail, warn] = run_fast_configuration(SysList)
%RUN_FAST_CONFIGURATION Check systems in parallel with Model Advisor
% Return number of warnings and failures.
fileName = 'slvnvdemo_mdladv_config.mat';
fail=0;
warn=0;

SysResultObjArray = ModelAdvisor.run(SysList,'Configuration',fileName,...
 'ParallelMode','On');

for i=1:length(SysResultObjArray)
 fail = fail + SysResultObjArray{i}.numFail;
 warn = warn + SysResultObjArray{i}.numWarn;
end

end

8 Save the function.
9 Test the function. In the MATLAB Command Window, create a list of systems:

SysList={'sldemo_auto_climatecontrol/Heater Control',...
 'sldemo_auto_climatecontrol/AC Control','rtwdemo_iec61508'};

10 Run run_fast_configuration on the list of systems:
[failures, warnings] = run_fast_configuration(SysList);

11 Review the results. Click the Summary Report link to open the Model Advisor
Command-Line Summary report.

See Also
ModelAdvisor.run

Related Examples
• “Create a Function for Checking Multiple Systems” on page 4-3

4 Check Systems Programmatically

4-6

Archive and View Results

Archive Results
After you run the Model Advisor programmatically, you can archive the results. The
ModelAdvisor.run function returns a cell array of ModelAdvisor.SystemResult
objects, one for each system run. If you save the objects, you can use them to view the
results at a later time without rerunning the Model Advisor.

View Results in Command Window
When you run the Model Advisor programmatically, the system-level results of the run are
displayed in the Command Window. For example:
Systems passed: 0 of 1
Systems with warnings: 1 of 1
Systems failed: 0 of 1
Summary Report

The Summary Report link provides access to the Model Advisor Command-Line Summary
report.

You can review additional results in the Command Window by calling the
DisplayResults parameter when you run the Model Advisor. For example, run the
Model Advisor as follows:
SysResultObjArray = ModelAdvisor.run('sldemo_auto_climatecontrol/Heater Control',...
 'Configuration','slvnvdemo_mdladv_config.mat','DisplayResults','Details');

The results displayed in the Command Window are:
 Running Model Advisor
 Running Model Advisor on sldemo_auto_climatecontrol/Heater Control
 ==
 Model Advisor run: 26-Jun-2019 15:01:13
 Configuration: slvnvdemo_mdladv_config.mat
 System: sldemo_auto_climatecontrol/Heater Control
 System version: 10
 Created by: The MathWorks, Inc.
 ==
 (1) Warning: Check model diagnostic parameters [check ID: mathworks.maab.jc_0021]
 --
 (2) Pass: Check for root Inports with missing properties [check ID: mathworks.iec61508.RootLevelInports]
 --
 (3) Pass: Check for unconnected objects [check ID: mathworks.iec61508.UnconnectedObjects]
 --
 (4) Pass: Check for blocks not recommended for C/C++ production code deployment [check ID: mathworks.iec61508.PCGSupport]
 --
 Summary: Pass Warning Fail Not Run

 Archive and View Results

4-7

 3 1 0 0
 ==

 Systems passed: 0 of 1

 Systems with warnings: 1 of 1

 Systems failed: 0 of 1
 Summary Report

To display the results in the Command Window after loading an object, use the
viewReport function.

View Results in Model Advisor Command-Line Summary
Report
When you run the Model Advisor programmatically, a Summary Report link is displayed in
the Command Window. Clicking this link opens the Model Advisor Command-Line
Summary report. The following graphic is the report that the Model Advisor generates for
run_configuration.

4 Check Systems Programmatically

4-8

To view the Model Advisor Command-Line Summary report after loading an object, use
the summaryReport function.

View Results in Model Advisor GUI
In the Model Advisor window, you can view the results of running the Model Advisor
programmatically using the viewReport function. In the Model Advisor window, you can
review results, run checks, fix warnings and failures, and view and save Model Advisor
reports.

Tip To fix warnings and failures, you must rerun the check in the Model Advisor window.

 Archive and View Results

4-9

View Model Advisor Report
For a single system or check, you can view the same Model Advisor report that you access
from the Model Advisor GUI.

To view the Model Advisor report for a system:

• Open the Model Advisor Command-Line Summary report. In the Systems Run table,
click the link for the Model Advisor report.

• Use the viewReport function.

To view individual check results:

• In the Command Window, generate a detailed report using the viewReport function
with the DisplayResults parameter set to Details, and then click the Pass,
Warning, or Fail link for the check. The Model Advisor report for the check opens.

• Use the view function.

See Also
ModelAdvisor.run | ModelAdvisor.summaryReport | view | viewReport

Related Examples
• “Archive and View Model Advisor Run Results” on page 4-11
• “Create a Function for Checking Multiple Systems” on page 4-3
• “Create a Function for Checking Multiple Systems in Parallel” on page 4-5

More About
• “Run Model Advisor Checks and Review Results” on page 3-5
• “Address Model Check Results” (Simulink)
• “Generate Model Advisor Reports” on page 3-105
• “Save and View Model Advisor Check Reports” (Simulink)
• “Find Model Advisor Check IDs” (Simulink)
• “Run Model Advisor Checks in Background” (Simulink)
• “Save and Load Process for Objects” (MATLAB)

4 Check Systems Programmatically

4-10

Archive and View Model Advisor Run Results
This example guides you through archiving the results of running checks so that you can
review them at a later time. To simulate archiving and reviewing, the steps in the tutorial
detail how to save the results, clear out the MATLAB workspace (simulates shutting down
MATLAB), and then load and review the results.

1 Call the ModelAdvisor.run function:
SysResultObjArray = ModelAdvisor.run({'sldemo_auto_climatecontrol/Heater Control'},...
 'Configuration','slvnvdemo_mdladv_config.mat');

2 Save the SystResulObj for use at a later time:
save my_model_advisor_run SysResultObjArray

3 Clear the workspace to simulate viewing the results at a different time:
clear

4 Load the results of the Model Advisor run:
load my_model_advisor_run SysResultObjArray

5 View the results in the Model Advisor:
viewReport(SysResultObjArray{1},'MA')

See Also
ModelAdvisor.run

Related Examples
• “Archive and View Results” on page 4-7

 Archive and View Model Advisor Run Results

4-11

Model Metrics

5

Collect and Explore Metric Data by Using the Metrics
Dashboard

The Metrics Dashboard collects and integrates quality metric data from multiple Model-
Based Design tools to provide you with an assessment of your project quality status. To
open the dashboard:

• In the Apps gallery, click Metrics Dashboard.
• At the command line, enter metricsdashboard(system). The system can be either

a model name or a block path to a subsystem. The system cannot be a Configurable
Subsystem block.

You can collect metric data by using the dashboard or programmatically by using the
slmetric.Engine API. When you open the dashboard, if you have previously collected
metric data for a particular model, the dashboard populates from existing data in the
database.

If you want to use the dashboard to collect (or recollect) metric data, in the toolbar:

• Use the Options menu to specify whether to include model references and libraries in
the data collection.

• Click All Metrics. If you do not want to collect metrics that require compiling the
model, click Non-Compile Metrics.

The Metrics Dashboard provides the system name and a data collection timestamp. If
there were issues during data collection, click the alert icon to see warnings.

5 Model Metrics

5-2

Metrics Dashboard Widgets
The Metrics Dashboard contains widgets that provide visualization of metric data in these
categories: size, modeling guideline compliance, and architecture. To explore the data in
more detail, click an individual metric widget. For your selected metric, a table displays
the value, aggregated value, and measures (if applicable) at the model component level.
From the table, the dashboard provides traceability and hyperlinks to the data source so
that you can get detailed results and recommended actions for troubleshooting issues.
When exploring drill-in data, note that:

 Collect and Explore Metric Data by Using the Metrics Dashboard

5-3

• The Metrics Dashboard calculates metric data per component. A component can be a
model, subsystem, chart, or MATLAB Function block.

• You can view results in either a Tree or Table view. For the High Integrity and
MAAB compliance widgets, you can also choose a Grid view. To view highlighted
results, in the grid view, click a cell.

• To sort the results by value or aggregated value, click the corresponding value column
header.

• For metrics other than the High Integrity and MAAB compliance widgets, you can
filter results. To filter results, in the Table view, select the context menu on the right
side of the TYPE, COMPONENT, and PATH column headers. From the TYPE menu,
select applicable components. From the COMPONENT and PATH menus, type a
component name or path in the search bar. The Metrics Dashboard saves the filters for
a widget, so you can view metric details for other widgets and return to the filtered
results.

• In the Table and Tree view, a value or aggregated value of n/a indicates that results
are not available for that component. If the value and aggregated value are n/a, the
Table view does not list the component. The Tree view does list such a component.
For the Stateflow LOC widget, the image shows the comparison.

• The metric data that is collected quantifies the overall system, including instances of
the same model. For aggregated values, the metric engine aggregates data from each
instance of a model in the referencing hierarchy. For example, if the same model is

5 Model Metrics

5-4

referenced twice in the system hierarchy, its block count contributes twice to the
overall system block count.

• If a subsystem, chart, or MATLAB Function block uses a parameter or is flagged for an
issue, then the parameter count or issue count is increased for the parent component.

• The Metrics Dashboard analyzes variants.

For custom metrics, you can specify widgets to add to the dashboard. You can also remove
widgets. To learn more about customizing the Metrics Dashboard, see “Customize Metrics
Dashboard Layout and Functionality” on page 5-47.

Size
This table lists the Metrics Dashboard widgets that provide an overall picture of the size
of your system. When you drill into a widget, this table also lists the detailed information
available.

Widget Metric Drill-In Data
Blocks Simulink block count

(mathworks.metrics.SimulinkBlo
ckCount)

Number of blocks by component

Models Model file count
(mathworks.metrics.ModelFileCo
unt)

Number of model files by component

Files File count
(mathworks.metrics.FileCount)

Number of model and library files by
component

MATLAB LOC Effective lines of MATLAB code
(mathworks.metrics.MatlabLOCCo
unt)

Effective lines of code, in MATLAB
Function block and MATLAB functions
in Stateflow, by component

Stateflow LOC Effective lines of code for Stateflow
blocks
(mathworks.metrics.StateflowLO
CCount)

Effective lines of code for Stateflow
blocks by component

 Collect and Explore Metric Data by Using the Metrics Dashboard

5-5

Widget Metric Drill-In Data
System Interface • Input and Output count

(mathworks.metrics.Explicit
IOCount)

• Parameter count
(mathworks.metrics.Paramete
rCount)

• Number of inputs and outputs by
component (includes trigger ports)

• Number of parameters by
component

Modeling Guideline Compliance
For this particular system, the model compliance widgets indicate the level of compliance
with industry standards and guidelines. This table lists the Metrics Dashboard widgets
related to modeling guideline compliance and the detailed information available when you
drill into the widget.

Widget Metric Drill-In Data
High Integrity
Compliance

Model Advisor standards check
compliance - High Integrity
(mathworks.metrics.ModelAdviso
rCheckCompliance.hisl_do178)

For each component:

• Percentage of checks passed
• Status of each check

Integration with the Model Advisor for
more detailed results.

MAAB
Compliance

Model Advisor standards check
compliance - MAAB
(mathworks.metrics.ModelAdviso
rCheckCompliance.maab)

For each component:

• Percentage of checks passed
• Status of each check

Integration with the Model Advisor for
more detailed results.

High Integrity
Check Issues

Model Advisor standards issues -
High Integrity
(mathworks.metrics.ModelAdviso
rCheckIssues.hisl_do178)

• Number of compliance check issues
by component (see the following
Note below).

• Components without issues or
aggregated issues are not listed.

5 Model Metrics

5-6

Widget Metric Drill-In Data
MAAB Check
Issues

Model Advisor standards issues -
MAAB
(mathworks.metrics.ModelAdviso
rCheckIssues.maab)

• Number of compliance check issues
by component (see the following
Note below).

• Components without issues or
aggregated issues are not listed.

Code Analyzer
Warnings

Warnings from MATLAB Code
Analyzer
(mathworks.metrics.MatlabCodeA
nalyzerWarnings)

Number of Code Analyzer warnings by
component.

Diagnostic
Warnings

Simulink diagnostic warning count
(mathworks.metrics.DiagnosticW
arningsCount)

• Number of Simulink diagnostic
warnings by component.

• If there are warnings, at the top of
the dashboard, there is a hyperlink
that opens the Diagnostic Viewer.

Note An issue with a compliance check that analyzes configuration parameters adds to
the issue count for the model that fails the check.

You can use the Metrics Dashboard to perform compliance and issues checking on your
own group of Model Advisor checks. For more information, see “Customize Metrics
Dashboard Layout and Functionality” on page 5-47.

Architecture
These widgets provide a view of your system architecture:

• The Potential Reuse/Actual Reuse widget shows the percentage of total number of
subcomponents that are clones and the percentage of total number of components that
are linked library blocks. Orange indicates potential reuse. Blue indicates actual
reuse.

• The other system architecture widgets use a value scale. For each value range for a
metric, a colored bar indicates the number of components that fall within that range.
Darker colors indicate more components.

 Collect and Explore Metric Data by Using the Metrics Dashboard

5-7

This table lists the Metrics Dashboard widgets related to architecture and the detailed
information available when you select the widget.

Widget Metric Drill-In Data
Potential Reuse /
Actual Reuse

Potential
Reuse(mathworks.metrics.CloneC
ontent) and Actual
Reuse(mathworks.metrics.Librar
yContent)

Fraction of total number of
subcomponents that are clones as a
percentage

Fraction of total number of
components that are linked library
blocks as a percentage

Integrate with the Identify Modeling
Clones tool by clicking the Open
Conversion Tool button.

Model
Complexity

Cyclomatic complexity
(mathworks.metrics.CyclomaticC
omplexity)

Model complexity by component

Blocks Simulink block count
(mathworks.metrics.SimulinkBlo
ckCount)

Number of blocks by component

Stateflow LOC Effective lines of code for Stateflow
blocks
(mathworks.metrics.StateflowLO
CCount)

Effective lines of code for Stateflow
blocks by component

MATLAB LOC Effective lines of MATLAB code
(mathworks.metrics.MatlabLOCCo
unt)

Effective lines of code, in MATLAB
Function block and MATLAB functions
in Stateflow, by component

Metric Thresholds
For the Model Complexity, Modeling Guideline Compliance, and Reuse widgets, the
Metrics Dashboard contains default threshold values. These values indicate whether your
data is Compliant or requires review (Warning). For Compliant data, the widget contains
green. For warning data, the widget contains yellow. Widgets that do not have Metric
threshold values contain blue.

5 Model Metrics

5-8

• For the Modeling Guideline Compliance metrics, the metric threshold value is zero
Model Advisor issues. If you model has issues, the widgets contain yellow. If there are
no issues, the widgets contain green.

• If your model has warnings, the Code Analyzer and Diagnostic widgets are yellow. If
there are no warnings, the widgets contain green.

• For the reuse widgets, the metric threshold value is zero. If your model has potential
clones, the widget contains yellow. If there are no potential clones, the widget contains
green.

• For the Model Complexity widget, the metric threshold value is 30. If your model has
a cyclomatic complexity greater than 30, the widget contains yellow. If the value is less
than or equal to 30, the widget contains green.

You can specify your own metric threshold values for all of the widgets in the Metrics
Dashboard. You can also specify values corresponding to a noncompliant range. For more
information, see “Customize Metrics Dashboard Layout and Functionality” on page 5-47.

Dashboard Limitations
When using the Metrics Dashboard, note these considerations:

• The analysis root for the Metrics Dashboard cannot be a Configurable Subsystem
block.

• The Model Advisor, a tool that the Metrics Dashboard uses for data collection, cannot
have more than one open session per model. For this reason, when the dashboard
collects data, it closes an existing Model Advisor session.

• If you use an sl_customization.m file to customize Model Advisor checks, these
customizations can change your dashboard results. For example, if you hide Model
Advisor checks that the dashboard uses to collect metrics, the dashboard does not
collect results for those metrics.

• When the dashboard collects metrics that require a model compilation, the software
changes to a temporary folder. Because of this folder change, relative path
dependencies in your model can become invalid.

• The Metrics Dashboard does not count MAAB checks that are not about blocks as
issues. Examples include checks that warn about font formatting or file names. In the
Model Advisor Check Issues widget, the tool might report zero MAAB issues, but still
report issues in the MAAB Modeling Guideline Compliance widget. For more
information about these issues, click the MAAB Modeling Guideline Compliance
widget.

 Collect and Explore Metric Data by Using the Metrics Dashboard

5-9

See Also

More About
• “Collect Model Metrics Programmatically” on page 5-18
• “Model Metrics”
• “Collect Compliance Data and Explore Results in the Model Advisor” on page 5-30
• “Collect Metric Data Programmatically and View Data Through the Metrics

Dashboard” on page 5-35

5 Model Metrics

5-10

Collect Model Metrics Using the Model Advisor
To help you assess your model for size, complexity, and readability, you can run model
metrics in the Model Advisor By Task > Model Metrics subfolder.

1 Open the sldemo_fuelsys model.
2 In the model window, open the Modeling tab and click Model Advisor. A System

Selector — Model Advisor dialog box opens. Click OK.
3 In the left pane of the Model Advisor, navigate to By Task > Model Metrics. Select

the model metrics to run on your model.

4 Click Run Selected Checks.
5 After the Model Advisor runs an analysis, in the left pane of the Model Advisor

window, select a model metric to explore the result. Select the metric Simulink
block metric. A summary table provides the number of blocks at the root model
level and subsystem level.

 Collect Model Metrics Using the Model Advisor

5-11

matlab:sldemo_fuelsys

Alternatively, you can view the analysis results in the Model Advisor report.

After reviewing the metric results, you can update your model to meet size, complexity,
and readability recommendations.

See Also

More About
• “Model Metrics”
• “Model Metric Data Aggregation” on page 5-22
• “Collect Model Metrics Programmatically” on page 5-18
• “Create a Custom Model Metric for Nonvirtual Block Count” on page 5-13
• “Run Model Advisor Checks and Review Results” on page 3-5

5 Model Metrics

5-12

Create a Custom Model Metric for Nonvirtual Block
Count

This example shows how to use the model metric API to create a custom model metric for
counting nonvirtual blocks in a model. After creating the metric, you can collect data for
the metric, access the results, and export the results.

Create Metric Class

To create a custom model metric, use the slmetric.metric.createNewMetricClass
function to create a new metric class derived from the base class
slmetric.metric.Metric. The slmetric.metric.createNewMetricClass function creates
a file that contains a constructor and an empty metric algorithm method.

1. For this example, make sure that you are in a writeable folder and create a new metric
class named nonvirtualblockcount.

className = 'nonvirtualblockcount';
slmetric.metric.createNewMetricClass(className);

2. Write the metric algorithm into the slmetric.metric.Metric method, algorithm.
The algorithm calculates the metric data specified by the
Advisor.component.Component class. The Advisor.component.Types class
specifies the types of model objects for which you can calculate metric data. For this
example, the file nonvirtualblockcount_orig.m contains the logic to create a metric
that counts the nonvirtual blocks. Copy this file to the nonvirtualblockcount.m file.

copyfile nonvirtualblockcount_orig.m nonvirtualblockcount.m f

When creating a custom metric, you must set the following properties of the
slmetric.metric.Metric class:

• ID: Unique metric identifier that retrieves the new metric data.
• Name: Name of the metric algorithm.
• ComponentScope: Model components for which the metric is calculated.
• CompileContext: Compile mode for metric calculation. If your model requires model

compilation, specify PostCompile. Collecting metric data for compiled models slows
performance.

• ResultCheckSumCoverage: Specify whether you want the metric data regenerated if
source file and Version have not changed.

 Create a Custom Model Metric for Nonvirtual Block Count

5-13

• AggregationMode: How the metric algorithm aggregates metric data.
• AggregateComponentDetails: Returns all detailed results or aggregates detailed

results of the component.

Optionally, you can set these additional properties:

• Description: Description of the metric.
• Version: Metric version.

3. Now that your new model metric is defined in nonvirtualblockcount.m, you can register
the new metric in the metric repository.

[id_metric,err_msg] = slmetric.metric.registerMetric(className);

Collect Metric Data

To collect metric data on models, use instances of slmetric.Engine. Using the
getMetrics method, specify the metrics you want to collect. For this example, specify
the nonvirtual block count metric for the sldemo_mdlref_bus model.

1. Load the sldemo_mdlref_bus model.

model = 'sldemo_mdlref_bus';
load_system(model);

2. Create a metric engine object and set the analysis root.

metric_engine = slmetric.Engine();
setAnalysisRoot(metric_engine,'Root',model,'RootType','Model');

3. Collect metric data for the nonvirtual block count metric.

execute(metric_engine);
rc = getMetrics(metric_engine,id_metric);

Display and Export Results

To access the metrics for your model, use instance of slmetric.metric.Result. In this
example, display the nonvirtual block count metrics for the sldemo_mdlref_bus model. For
each result, display the MetricID, ComponentPath, and Value.

for n=1:length(rc)
 if rc(n).Status == 0
 results = rc(n).Results;

5 Model Metrics

5-14

 for m=1:length(results)
 disp(['MetricID: ',results(m).MetricID]);
 disp([' ComponentPath: ', results(m).ComponentPath]);
 disp([' Value: ', num2str(results(m).Value)]);
 disp(' ');
 end
 else
 disp(['No results for:',rc(n).MetricID]);
 end
 disp(' ');
end

MetricID: nonvirtualblockcount
 ComponentPath: sldemo_mdlref_bus
 Value: 13

MetricID: nonvirtualblockcount
 ComponentPath: sldemo_mdlref_bus/More Info3
 Value: 0

MetricID: nonvirtualblockcount
 ComponentPath: sldemo_mdlref_bus/More Info4
 Value: 0

MetricID: nonvirtualblockcount
 ComponentPath: sldemo_mdlref_bus/More Info1
 Value: 0

MetricID: nonvirtualblockcount
 ComponentPath: sldemo_mdlref_bus/More Info2
 Value: 0

MetricID: nonvirtualblockcount
 ComponentPath: sldemo_mdlref_counter_bus
 Value: 2

MetricID: nonvirtualblockcount
 ComponentPath: sldemo_mdlref_counter_bus/COUNTER
 Value: 6

MetricID: nonvirtualblockcount
 ComponentPath: sldemo_mdlref_counter_bus/COUNTER/Counter
 Value: 3

 Create a Custom Model Metric for Nonvirtual Block Count

5-15

MetricID: nonvirtualblockcount
 ComponentPath: sldemo_mdlref_counter_bus/COUNTER/Counter/ResetCheck
 Value: 4

MetricID: nonvirtualblockcount
 ComponentPath: sldemo_mdlref_counter_bus/COUNTER/Counter/ResetCheck/NoReset
 Value: 2

MetricID: nonvirtualblockcount
 ComponentPath: sldemo_mdlref_counter_bus/COUNTER/Counter/ResetCheck/Reset
 Value: 3

MetricID: nonvirtualblockcount
 ComponentPath: sldemo_mdlref_counter_bus/COUNTER/Counter/SaturationCheck
 Value: 5

MetricID: nonvirtualblockcount
 ComponentPath: sldemo_mdlref_counter_bus/COUNTER/LimitsProcess
 Value: 1

MetricID: nonvirtualblockcount
 ComponentPath: sldemo_mdlref_counter_bus/More Info1
 Value: 0

MetricID: nonvirtualblockcount
 ComponentPath: sldemo_mdlref_counter_bus/More Info2
 Value: 0

To export the metric results to an XML file, use the exportMetrics method. For each
metric result, the XML file includes the ComponentID, ComponentPath, MetricID,
Value, AggregatedValue, and Measure.

filename='MyMetricData.xml';
exportMetrics(metric_engine,filename);

For this example, unregister the nonvirtual block count metric.

slmetric.metric.unregisterMetric(id_metric);

Close the model.

clear;
bdclose('all');

5 Model Metrics

5-16

Limitations

Custom metric algorithms do not support the path property on component objects:

• Linked Stateflow charts
• MATLAB Function blocks

Custom metric algorithms do not follow library links.

Copyright 2019 The MathWorks, Inc.

See Also
Advisor.component.Component | Advisor.component.Types | slmetric.Engine
| slmetric.metric.Metric | slmetric.metric.Result |
slmetric.metric.createNewMetricClass

More About
• “Model Metrics”
• “Model Metric Data Aggregation” on page 5-22
• “Collect Model Metrics Programmatically” on page 5-18

 See Also

5-17

Collect Model Metrics Programmatically
This example shows how to use the model metric API to programmatically collect
subsystem and block count metrics for a model. After collecting metrics for the model,
you can access the results and export them to a file.

Example Model

Open model vdp.

model = 'vdp';
open_system(model);

Collect Metrics

To collect metric data on a model, create a metric engine object and call execute.

metric_engine = slmetric.Engine();
setAnalysisRoot(metric_engine,'Root','vdp','RootType','Model');
execute(metric_engine);

5 Model Metrics

5-18

https://localhost:31517/toolbox/matlab/codetools/liveeditor/%3Cmatlab:vdp%20vdp%3E

Updating Model Advisor cache...
Model Advisor cache updated. For new customizations, to update the cache, use the Advisor.Manager.refresh_customizations method.

Access Results

Using the getMetrics method, specify the metrics you want to collect. For this example,
specify the block count and subsystem count metrics for the vdp model. getMetrics
returns an array of slmetric.metric.ResultCollection objects.

res_col = getMetrics(metric_engine,{'mathworks.metrics.SimulinkBlockCount',...
'mathworks.metrics.SubSystemCount'});

Store and Display Results

Create cell array metricData to store the MetricID, ComponentPath, and Value for
the metric results. The MetricID is the identifier for the metric, the ComponentPath is
the path to component for which the metric is calculated, and the Value is the metric
value. Write a loop to display the results.

metricData ={'MetricID','ComponentPath','Value'};
cnt = 1;
for n=1:length(res_col)
 if res_col(n).Status == 0
 results = res_col(n).Results;

 for m=1:length(results)
 disp(['MetricID: ',results(m).MetricID]);
 disp([' ComponentPath: ',results(m).ComponentPath]);
 disp([' Value: ',num2str(results(m).Value)]);
 metricData{cnt+1,1} = results(m).MetricID;
 metricData{cnt+1,2} = results(m).ComponentPath;
 metricData{cnt+1,3} = results(m).Value;
 cnt = cnt + 1;
 end
 else
 disp(['No results for:',res_col(n).MetricID]);
 end
 disp(' ');
end

MetricID: mathworks.metrics.SimulinkBlockCount
 ComponentPath: vdp
 Value: 11
MetricID: mathworks.metrics.SimulinkBlockCount
 ComponentPath: vdp/More Info

 Collect Model Metrics Programmatically

5-19

 Value: 1

MetricID: mathworks.metrics.SubSystemCount
 ComponentPath: vdp
 Value: 1
MetricID: mathworks.metrics.SubSystemCount
 ComponentPath: vdp/More Info
 Value: 0

Export Results

To export the metricData results MetricID, ComponentPath, and Value to a
spreadsheet, use writetable to write the contents of metricData to
MySpreadsheet.xlsx.

filename = 'MySpreadsheet.xlsx';
T=table(metricData);
writetable(T,filename);

To export the metric results to an XML file, use the exportMetrics method. For each
metric result, the XML file includes the ComponentID, ComponentPath, MetricID,
Value, AggregatedValue, and Measure.

filename='MyMetricResults.xml';
exportMetrics(metric_engine,filename)

Close the model vdp.

bdclose(model);

Limitations

For one model, you cannot collect metric data into the same database file (that is, the
Metrics.db file) on multiple platforms.

See Also
slmetric.Engine | slmetric.metric.Result |
slmetric.metric.ResultCollection

5 Model Metrics

5-20

More About
• “Model Metrics”
• “Model Metric Data Aggregation” on page 5-22
• “Collect Model Metrics Using the Model Advisor” on page 5-11
• “Create a Custom Model Metric for Nonvirtual Block Count” on page 5-13

 See Also

5-21

Model Metric Data Aggregation
You can better understand the size, complexity, and readability of a model and its
components by analyzing aggregated model metric data. Aggregated metric data is
available in the AggregatedValue and AggregatedMeasures properties of an
slmetric.metric.Result object. The AggregatedValue property aggregates the
metric scalar values. The AggregatedMeasures property aggregates the metric
measures (that is, the detailed information about the metric values).

How Model Metric Aggregation Works
The implementation of a model metric defines how a metric aggregates data across a
component hierarchy. For MathWorks model metrics, the slmetric.metric.Metric
class defines model metric aggregation. This class includes these two aggregation
properties:

• AggregationMode, which has these options:

• Sum: Returns the sum of the Value property and the Value properties of its
children components across the component hierarchy. Returns the sum of the
Meaures property and the Measures properties of its children components across
the component hierarchy.

• Max: Returns the maximum of the Value property and the Value properties of its
children components across the component hierarchy. Returns the maximum of the
Measures property and the Measures properties of its children components
across the component hierarchy.

• None: No aggregation of metric values.
• AggregateComponentDetails is a Boolean value, which has these options:

• true: For metrics that return fine-granular results (that is, more than one result
per component), the software aggregates these results to the component level by
taking the sum of the values and measures properties. Returns a result that spans
the complete component.

• false: Returns the component results. The software does not aggregate the fine-
granular results.

The MathWorks model metrics that return fine-granular results are:

• “Cyclomatic complexity metric”, which creates a result for each state in a Chart.

5 Model Metrics

5-22

• “Effective lines of MATLAB code metric”, which creates a result for each function
or subfunction inside a MATLAB function block or a MATLAB function in Stateflow.

You can find descriptions of MathWorks model metrics and their aggregation property
settings in “Model Metrics”. For custom metrics, as part of the algorithm method, you
can define how the metric aggregates data. For more information, see “Create a Custom
Model Metric for Nonvirtual Block Count” on page 5-13.

This diagram shows how the software aggregates metric data across the components of a
model hierarchy. The parent model is at the top of the hierarchy. The components can be
the following:

• Model
• Subsystem block
• Chart
• MATLAB function block
• Protected model

 Model Metric Data Aggregation

5-23

Access Aggregated Metric Data
This example shows how to collect metric data programmatically in the metric engine,
and then access aggregated metric data.

1 Load the sldemo_applyVarStruct model.

model = 'sldemo_applyVarStruct';
open(model);
load_system(model);

2 Create an slmetric.Engine object and set the analysis root.

metric_engine = slmetric.Engine();
setAnalysisRoot(metric_engine,'Root',model,'RootType','Model');

3 Collect data for the Input output model metric.

execute(metric_engine,'mathworks.metrics.IOCount');
4 Get the model metric data that returns an array of

slmetric.metric.ResultCollection objects, res_col. Specify the input
argument for AggregationDepth.

res_col = getMetrics(metric_engine,'mathworks.metrics.IOCount',...
'AggregationDepth','All');

The AggregationDepth input argument has two options: All and None. If you do
not want the getMetrics method to aggregate measures and values, specify None.

5 Display the results.

metricData ={'MetricID','ComponentPath','Value',...
 'AggregatedValue','Measures','AggregatedMeasures'};
cnt = 1;
for n=1:length(res_col)
 if res_col(n).Status == 0
 results = res_col(n).Results;

 for m=1:length(results)
 disp(['MetricID: ',results(m).MetricID]);
 disp([' ComponentPath: ',results(m).ComponentPath]);
 disp([' Value: ',num2str(results(m).Value)]);
 disp([' Aggregated Value: ',num2str(results(m).AggregatedValue)]);
 disp([' Measures: ',num2str(results(m).Measures)]);
 disp([' Aggregated Measures: ',...
 num2str(results(m).AggregatedMeasures)]);

5 Model Metrics

5-24

 metricData{cnt+1,1} = results(m).MetricID;
 metricData{cnt+1,2} = results(m).ComponentPath;
 metricData{cnt+1,3} = results(m).Value;
 tdmetricData{cnt+1,4} = results(m).Measures;
 metricData{cnt+1,5} = results(m).AggregatedMeasures;
 cnt = cnt + 1;
 end
 else
 disp(['No results for:',res_col(n).MetricID]);
 end
 disp(' ');
end

Here are the results:

MetricID: mathworks.metrics.IOCount
 ComponentPath: sldemo_applyVarStruct
 Value: 3
 Aggregated Value: 5
 Measures: 1 2 0 0
 Aggregated Measures: 3 2 0 0
MetricID: mathworks.metrics.IOCount
 ComponentPath: sldemo_applyVarStruct/Controller
 Value: 4
 Aggregated Value: 4
 Measures: 3 1 0 0
 Aggregated Measures: 3 1 0 0
MetricID: mathworks.metrics.IOCount
 ComponentPath: sldemo_applyVarStruct/Aircraft
Dynamics
Model
 Value: 5
 Aggregated Value: 5
 Measures: 3 2 0 0
 Aggregated Measures: 3 2 0 0
MetricID: mathworks.metrics.IOCount
 ComponentPath: sldemo_applyVarStruct/Dryden Wind
Gust Models
 Value: 2
 Aggregated Value: 2
 Measures: 0 2 0 0
 Aggregated Measures: 0 2 0 0
MetricID: mathworks.metrics.IOCount
 ComponentPath: sldemo_applyVarStruct/Nz pilot
calculation

 Model Metric Data Aggregation

5-25

 Value: 3
 Aggregated Value: 3
 Measures: 2 1 0 0
 Aggregated Measures: 2 1 0 0
MetricID: mathworks.metrics.IOCount
 ComponentPath: sldemo_applyVarStruct/More Info2
 Value: 0
 Aggregated Value: 0
 Measures: 0 0 0 0
 Aggregated Measures: 0 0 0 0

For the Input output metric, the AggregationMode is Max. For each component, the
AggregatedValue and AggregatedMeasures properties are the maximum number of
inputs and outputs of itself and its children components. For example, for
sldemo_applyVarStruct, the AggregatedValue property is 5, which is the
sldemo_applyVarStruct/Aircraft Dynamics Model component value.

See Also
slmetric.Engine | slmetric.metric.Metric | slmetric.metric.Result |
slmetric.metric.ResultCollection

More About
• “Model Metrics”
• “Model Metric Data Aggregation” on page 5-22
• “Collect Model Metrics Using the Model Advisor” on page 5-11
• “Create a Custom Model Metric for Nonvirtual Block Count” on page 5-13

5 Model Metrics

5-26

Identify Modeling Clones with the Metrics Dashboard
You can use the Metrics Dashboard tool to help you reuse subsystems by identifying
clones across a model hierarchy. Clones are identical MATLAB Function blocks, identical
Stateflow charts, and subsystems that have identical block types and connections. The
clones can have different parameter settings and values. To replace clones with links to
library blocks, from the Metrics Dashboard, you can open the Clone Detector app.

Identify Clones

To open the example model ex_clone_detection, change your directory to the
matlabroot\help\toolbox\simulink\examples folder. At the MATLAB command
line, enter:

cd(fullfile(docroot, 'toolbox','simulink','examples'));

 Identify Modeling Clones with the Metrics Dashboard

5-27

1 Save the ex_clone_detection.slx model to a local working folder.
2 On the Apps tab, click Metrics Dashboard.
3 In the Metrics Dasbhoard, click All Metrics.
4 In the Architecture section, the yellow bar in the Potential Reuse row indicates

that the model contains clones. The percentage is the fraction of the total number of
subsystems, including Stateflow Charts and MATLAB Function blocks, that are
clones. To see details, click the yellow bar.

The model contains three clone groups. SS1 and SS4 are part of clone group one. SS3
and SS5 are part of clone group two. SS6 and SS7 are part of clone group three.

Replace Clones with Links to Library Blocks

1 To replace clones with links to library blocks, open the Clone Detector app by clicking
Open Conversion Tool. The Clone Detection app opens. For more information on the
app, see “Enable Component Reuse by Using Clone Detection” on page 3-32.

2 Click Find Clones. The app contains a list of clone groups on the Clone Detection
Actions and Results pane, on the Map Clone Groups to Library tab.

3 Click Replace Clones. The Clone Detector app replaces the clones with links to
library blocks. The library blocks are in the library specified by the Library to place
clones parameter. This parameter is on the Map Clone Groups to Library tab. The
library is on the MATLAB path. It has a default name of newLibraryFile.

After you refactor, you can remove the latest changes from the model. In the Clone
Detection Actions and Results pane, in the Logs tab, open the latest log and click
Restore. Each time you refactor a model, the tool creates a backup model in the folder
named with the prefix m2m_ plus the model name.

If you have a Simulink Test license, you can verify the equivalency of the refactored model
and the original model. Click Check Equivalency.

Run Model Metrics on the Refactored Model

1 Navigate to the Metrics Dashboard.
2 Click All Metrics.
3 In the Architecture section, the blue bar in the Actual Reuse row indicates that

75% of model components are links to library subsystems. The Potential Reuse row

5 Model Metrics

5-28

indicates that the model does not contain any clones that do not have links to library
blocks.

See Also

More About
• “Collect Model Metrics”

 See Also

5-29

Collect Compliance Data and Explore Results in the
Model Advisor

This example shows how to collect model metric data by using the Metrics Dashboard.
From the dashboard, explore detailed compliance results and, fix compliance issues by
using the Model Advisor.

Open the Example Model

Open the example model sldemo_fuelsys and save the model to a local folder.

open_system('sldemo_fuelsys');

Open the Metrics Dashboard

On the Apps tab, open the Metrics Dashboard by clicking Metrics Dashboard.

5 Model Metrics

5-30

matlab:sldemo_fuelsys

Collect Model Metrics

To collect the metric data for this model, click the All Metrics icon.

Explore Compliance Results

Locate the MODELING GUIDELINE COMPLIANCE section of the dashboard. This
section displays the percentage of High Integrity and MAAB compliance checks that
passed on all systems. The bars chart show the number of issues reported by the checks
in the corresponding check group.

To see a table that details the number of compliance issues by component, click anywhere
on the High Integrity bar chart. For compliance checks that analyze configuration
settings, each check that does not pass adds 1 issue to the model on which it failed.

 Collect Compliance Data and Explore Results in the Model Advisor

5-31

From the table, open the Throttle component in the model editor by clicking the
component hyperlink in the table. The model editor highlights blocks in the component
that have compliance issues.

5 Model Metrics

5-32

Explore Compliance Results in the Model Advisor

1 In the Metrics Dashboard, return to the main dashboard page by clicking the
Dashboard icon.

2 Click the High Integrity percentage gauge.
3 To see the status for each compliance check, click the Table view.
4 Expand the sldemo_fuelsys node.
5 To explore check results in more detail, click the Check safety-related diagnostic

settings for sample time hyperlink.
6 In the Model Advisor Highlight dialog box, click Check safety-related diagnostic

settings for sample time hyperlink.

 Collect Compliance Data and Explore Results in the Model Advisor

5-33

Fix a Compliance Issue

1 In the Model Advisor Report, the check results show the Current Value and
Recommended Value of diagnostic parameters.

2 To change the Current Value to the Recommended Value, click the parameter. The
Model Configuration Parameters dialog box opens.

3 Change the parameter settings.
4 Save your changes and close the dialog box.
5 Save the changes to the model.

Recollect Metrics

1 Return to the Metrics Dashboard.
2 To recollect the model metrics, click the All Metrics icon.
3 To return to the main dashboard page, click the Dashboard icon.
4 Confirm that the number of High Integrity check issues is reduced and the

compliance percentage is increased.

See Also

More About
• “Collect and Explore Metric Data by Using the Metrics Dashboard” on page 5-2
• “Collect Model Metrics Programmatically” on page 5-18

5 Model Metrics

5-34

Collect Metric Data Programmatically and View Data
Through the Metrics Dashboard

This example shows how to use the model metrics API to collect model metric data for
your model, and then explore the results by using the Metrics Dashboard.

Collect Metric Data Programmatically

To collect all of the available metrics for the model sldemo_fuelsys, use the
slmetric.Engine API. The metrics engine stores the results in the metric repository file
in the current Simulation Cache Folder, slprj.

metric_engine = slmetric.Engine();
setAnalysisRoot(metric_engine,'Root','sldemo_fuelsys','RootType','Model');
evalc('execute(metric_engine)');

Determine Model Compliance with MAAB Guidelines

To determine the percentage of MAAB checks that pass, use the metric compliance
results.

metricID = 'mathworks.metrics.ModelAdvisorCheckCompliance.maab';
metricResult = getAnalysisRootMetric(metric_engine, metricID);
disp(['MAAB compliance: ', num2str(100 * metricResult.AggregatedValue, 3),'%']);

MAAB compliance: 69.3%

Open the Metrics Dashboard

To explore the collected compliance metrics in more detail, open the Metrics Dashboard
for the model.

metricsdashboard('sldemo_fuelsys');

The Metrics Dashboard opens data for the model from the active metric repository, inside
the active Simulation Cache Folder. To view the previously collected data, the slprj
folder must be the same.

Find the MODELING GUIDELINE COMPLIANCE section of the dashboard. For each
category of compliance checks, the gauge indicates the percentage of compliance checks
that passed.

 Collect Metric Data Programmatically and View Data Through the Metrics Dashboard

5-35

The dashboard reports the same MAAB compliance percentage as the slmetric.Engine
API reports.

Explore the MAAB Compliance Results

Underneath the percentage gauges, the bar chart indicates the number of compliance
check issues. Click anywhere in the MAAB bar chart for Model Advisor Check Issues.

5 Model Metrics

5-36

The table details the number of check issues per model component. To sort the
components by number of check issues, click the Issues column.

 Collect Metric Data Programmatically and View Data Through the Metrics Dashboard

5-37

See Also

More About
• “Collect Model Metrics Programmatically” on page 5-18
• “Collect and Explore Metric Data by Using the Metrics Dashboard” on page 5-2

5 Model Metrics

5-38

Fix Metric Threshold Violations in a Continuous
Integration Systems Workflow

This example shows how to use the Metrics Dashboard with open-source tools GitLab and
Jenkins to test and refine your model in a continuous integration systems workflow.
Continuous integration is the practice of merging all developer working copies of project
files to a shared mainline. This workflow saves time and improves quality by maintaining
version control and automating and standardizing testing.

This example refers to a project that contains the shipped project
matlab:sldemo_slproject_airframe and these additional files which are relevant to this
example:

• A MATLAB script that specifies metric thresholds and customizes the Metrics
Dashboard.

• A MATLAB unit test that collects metric data and checks whether there are metric
threshold violations.

The example uses the Jenkins continuous integration server to run the MATLAB unit test
to determine if there are metric threshold violations. Jenkins archives test results for you
to download and investigate locally. GitLab is an online Git repository manager that you
can configure to work with Jenkins. This diagram shows how Simulink Check, GitLab, and
Jenkins work together in a continuous integration workflow.

 Fix Metric Threshold Violations in a Continuous Integration Systems Workflow

5-39

matlab:sldemo_slproject_airframe

Project Setup
The project contains all model, data, and configuration files including these files which
are required for this example:

• A MATLAB unit test that collects metric data for the project and checks that the model
files contain no metric threshold violations. For more information on the MATLAB Unit
tests, see “Script-Based Unit Tests” (MATLAB).

• A setup.m file that activates the configuration XML files that define metric
thresholds, set custom metric families, and customizes the Metrics Dashboard layout.
For this example, this code is the setup.m script:

function setup
 % refresh Model Advisor customizations
 Advisor.Manager.refresh_customizations();

 % set metric configuration with thresholds
 configFile = fullfile(pwd, 'config', 'MyConfiguration.xml');
 slmetric.config.setActiveConfiguration(configFile);

 uiconf = fullfile(pwd, 'config', 'MyDashboardConfiguration.xml');

5 Model Metrics

5-40

 slmetric.dashboard.setActiveConfiguration(uiconf);
end

On the Project tab, click Startup Shudown. For the Startup files field, specify the
setup.m file.

For more information on how to customize the Metrics Dashboard, see “Customize
Metrics Dashboard Layout and Functionality” on page 5-47.

• An sl_customization.m file that activates the Model Advisor configuration file to
customize the Model Advisor checks. For more information, see “Create and Add
Custom Checks - Basic Examples” on page 7-6

• A run script that executes during a Jenkins build. For this example, this code is in the
run.m file:

% script executed during Jenkins build
function run(IN_CI)
 if (IN_CI)
 jenkins_workspace = getenv('WORKSPACE');
 cd(jenkins_workspace);
 end

 % open the sl project
 slproj = simulinkproject(pwd);

 % execute tests
 runUnitTest();

 slproj.close();

 if IN_CI
 exit
 end
end

• A cleanup.m file that resets the active metric configuration to the default
configuration. For this example, this code is in the cleanup.m file script:

function cleanup
 rmpath(fullfile(pwd, 'data'));
 Advisor.Manager.refresh_customizations();

 % reset active metric configuration to default
 slmetric.config.setActiveConfiguration('');

 Fix Metric Threshold Violations in a Continuous Integration Systems Workflow

5-41

 slmetric.dashboard.setActiveConfiguration('');
end

On the Project tab, click Startup Shudown. For the Shutdown files field, specify the
cleanup.m file.

• A .gitignore file that verifies that derived artifacts are not checked into GitLab.
This code is in the .gitignore file:

work/**
reports/**
*.asv
*.autosave

GitLab Setup
Create a GitLab project for source-controlling your Project. For more information, see
https://docs.gitlab.com/ee/README.html.

1 Install the Git Client.
2 Set up a branching workflow. With GitLab, from the main branch, create a temporary

branch for implementing changes to the model files. Integration engineers can use
Jenkins test results to decide whether to merge a temporary branch into the master
branch. For more information, see

https://git-scm.com/book/en/v1/Git-Branching-Branching-Workflows.
3 Under Settings > Repository, protect the master branch by enforcing the use of

merge requests when developers want to merge their changes into the master
branch.

4 Under Settings, on the Integrations page, add a webhook to the URL of your
Jenkins project. This webhook triggers a build job on the Jenkins server.

Jenkins Setup
Install GitLab and Tap plugins. The MATLAB unit test uses the TAPPlugin to stream
results to a .tap file. To enable communication of test status from MATLAB to the Jenkins
job, Jenkins imports the .tap file.

Create a Jenkins project. Specify these configurations:

1 In your Jenkins project, click Configure.

5 Model Metrics

5-42

https://docs.gitlab.com/ee/README.html
https://git-scm.com/book/en/v1/Git-Branching-Branching-Workflows

2 On the General tab, specify a project name.
3 On the Source Code Management tab, for the Repository URL field, specify the

URL of your GitLab repository.
4 On the Build Triggers tab, select Build when a change is pushed to GitLab.
5 On the Build tab, execute MATLAB to call the run script. The run script opens the

project and runs all unit tests. For the project in this example, the code is:

matlab -nodisplay -r...
 "cd /var/lib/jenkins/workspace/'18b Metrics CI Demo'; run(true)"

6 In the Post-build Actions tab, configure the TAP plugin to publish TAP results to
Jenkins. In the Test Results field, specify reports/*.tap. For Files to archive,
specify reports/**,work/**.

The TAP plugin shows details from the MATLAB Unit test in the extended results of
the job. The Jenkins archiving infrastructure saves derived artifacts that are
generated during a Jenkins build.

Continuous Integration Workflow
After setting up your project, Jenkins, and GitLab, follow the continuous integration
workflow.

Phase 1: Feature Development

1 Create a local clone of the GitLab repository. See “Clone from Git Repository”
(MATLAB).

2 In Simulink, navigate to the local GitLab repository.
3 Create a feature branch and fetch and check-out files. See “Branch and Merge Files

with Git” (Simulink) and “Pull, Push, and Fetch Files with Git” (Simulink).
4 Make any necessary changes to the project files.
5 Simulate the model and validate the output in the Simulation Data Inspector.
6 Run MATLAB unit tests. For more information, see runtests.
7 Add and commit the modified models to the feature branch. See “Branch and Merge

Files with Git” (Simulink) and “Pull, Push, and Fetch Files with Git” (Simulink).
8 Push changes to the GitLab repository. See “Branch and Merge Files with Git”

(Simulink) and “Pull, Push, and Fetch Files with Git” (Simulink).

 Fix Metric Threshold Violations in a Continuous Integration Systems Workflow

5-43

9 In GitLab, create a merge request. Select the feature branch as source branch and
the target branch as master. Click Compare Branches and Continue.

10 If the feature is not fully implemented, mark the merge request as a work in progress
by adding the letters WIP: at the beginning of the request. If the merge request is not
marked WIP:, it immediately triggers a build after creation.

11 Click Submit Merge Request.

Phase 2: Qualification by Using Continuous Integration

1 If the letters WIP: are not at the beginning of the merge request, the push command
triggers a Jenkins build. In the Jenkins Setup part of this example, you configured
Jenkins to perform a build when you pushed changes to GitLab. To remove the
letters, click Resolve WIP status.

2 Navigate to the Jenkins project. In Build History, you can see the build status.
3 Click the Build.
4 Click Tap Test Results.
5 For this example, the MetricThresholdGateway.m unit test did not pass for three

metrics because these metrics did not meet the thresholds. To investigate this data,
you must download the data locally.

5 Model Metrics

5-44

Phase 3: Investigate Quality Issues Locally

1 Download the archived results to a local Git repository workspace.
2 Unzip the downloaded files. Copy the reports/ and work/ folders to the respective

folders in the local repository.
3 To explore the results, open the project and the Metrics Dashboard.

4 To resolve the test failures, make the necessary updates to the models. Push the
changes to the feature branch in GitLab.

5 Integration engineers can use Jenkins test results to decide when it is acceptable to
perform the merge of the temporary branch into the master branch.

 Fix Metric Threshold Violations in a Continuous Integration Systems Workflow

5-45

See Also
slmetric.config.setActiveConfiguration |
slmetric.dashboard.setActiveConfiguration

More About
• “Collect Model Metric Data by Using the Metrics Dashboard” on page 1-8
• “Collect and Explore Metric Data by Using the Metrics Dashboard” on page 5-2

5 Model Metrics

5-46

Customize Metrics Dashboard Layout and Functionality
Customize the Metrics Dashboard by using the model metric programming interface.
Customizing the dashboard extends your ability to use model metrics to assess that your
model and code comply with size, complexity, and readability requirements. You can
perform these Metrics Dashboard customizations:

• Configure compliance metrics to obtain compliance and issues metric data on your
Model Advisor configuration.

• Customize the dashboard layout by adding custom metrics, removing widgets, and
configuring existing widgets.

• Categorize metric data as compliant, warning, and noncompliant by specifying metric
threshold values.

Configure Compliance Metrics

Use the Metrics Dashboard and metric APIs to obtain compliance and issues metric data
on your Model Advisor configuration or on an existing check group such as the MISRA
checks. To set up your own Model Advisor configuration, see “Organize Checks and
Folders Using the Model Advisor Configuration Editor” on page 8-5. After you have set
up your Model Advisor configuration, follow these steps to specify the check groups for
which you want to obtain compliance and issues metric data:

1. To open the model, at the MATLAB command prompt, enter this command:

sf_car

2. Open the default configuration (that is, the one that is shipped with the Metrics
Dashboard). Add a corresponding slmetric.config.Configuration object to the
base workspace.

metricconfig=slmetric.config.Configuration.openDefaultConfiguration();

3. Create a cell array consisting of the Check Group IDs that correspond to those check
groups. Obtain a Check Group ID by opening the Model Advisor Configuration Editor and
selecting the folder that contains the group of checks. The folder contains a Check
Group ID parameter.

values = {'maab', 'hisl_do178', '_SYSTEM_By Task_misra_c'};

This cell array specifies MAAB, High-Integrity, and MISRA check groups. The values maab
and hisl_do178 correspond to a subset of MAAB and High-Integrity System checks. To

 Customize Metrics Dashboard Layout and Functionality

5-47

include all checks, specify the value for the Check Group ID parameter from the Model
Advisor Configuration Editor.

4. To set the configuration, pass the values cell array into the
setMetricFamilyParameterValues method. The 'ModelAdvisorStandard' string
is a standard string that you must supply to thesetMetricFamilyParameterValues
method.

setMetricFamilyParameterValues(metricconfig,'ModelAdvisorStandard', values);

5. Open the default configuration for the Metrics Dashboard layout (that is, the one that
ships with the Metrics Dashboard).

dashboardconfig = slmetric.dashboard.Configuration.openDefaultConfiguration();

6. Obtain the slmetric.dashboard.Layoutobject from the
slmetric.dashboard.Configuration object.

layout = getDashboardLayout(dashboardconfig);

7. Obtain widget objects that are in the layout object.

layoutWidget = getWidgets(layout);

8. The slmetric.dashboard.Layout object contains these objects:

• An slmetric.dashboard.Container object that holds an
slmetrics.dashboard.Widget object of type SystemInfo. The red number one in
the diagram below indicates the SystemInfo widget.

• An slmetric.dashboard.Groupobject that has the title SIZE.
• An slmetrics.dashboard.Group object that has the title MODELING

GUIDELINE COMPLIANCE.
• An slmetrics.dashboard.Group object that has the title ARCHITECTURE.

In the diagram, the red numbers 1, 2, 3, and 4 indicate their order in the layoutWidget
array. Obtain the compliance group from the layout.

complianceGroup = layoutWidget(3);

5 Model Metrics

5-48

9. The modeling guideline compliance group contains two containers. The top container
contains the High Integrity and MAAB compliance and check issues widgets. The red
numbers 3.1.1, 3.1.2, and 3.1.3 indicate the order of the three widgets in the first
container. The second container contains the Code Analyzer Warnings and Diagnostic
Warnings widgets.

Remove the High Integrity compliance widget.

 Customize Metrics Dashboard Layout and Functionality

5-49

complianceContainers = getWidgets(complianceGroup);
complianceContainerWidgets = getWidgets(complianceContainers(1));
complianceContainers(1).removeWidget(complianceContainerWidgets(1));

10. Create a custom widget for visualizing MISRA check issues metrics.

misraWidget = complianceContainers(1).addWidget('Custom', 1);
misraWidget.Title=('MISRA');
misraWidget.VisualizationType = 'RadialGauge';
misraWidget.setMetricIDs('mathworks.metrics.ModelAdvisorCheckCompliance._SYSTEM_By Task_misra_c');
misraWidget.setWidths(slmetric.dashboard.Width.Medium);

11. The bar chart widget visualizes the High Integrity and MAAB check groups. Point this
widget to the MISRA and MAAB check groups.

setMetricIDs(complianceContainerWidgets(3),...
({'mathworks.metrics.ModelAdvisorCheckIssues._SYSTEM_By Task_misra_c',...
'mathworks.metrics.ModelAdvisorCheckIssues.maab'}));
complianceContainerWidgets(3).Labels = {'MISRA', 'MAAB'};

12. To run the Metrics Dashboard at this point in the example, uncomment out the
following lines of code. The save commands serialize the API information to XML files.
The slmetric.config.setActiveConfiguration and
slmetric.dashboard.setActiveConfiguration commands set the active
configuration objects.

% save(metricconfig,'FileName','MetricConfig.xml');
% save(dashboardconfig,'Filename','DashboardConfig.xml');
% slmetric.config.setActiveConfiguration(fullfile(pwd,'MetricConfig.xml'));
% slmetric.dashboard.setActiveConfiguration(fullfile(pwd,'DashboardConfig.xml'));

14. To open the Metrics Dashboard, uncomment this code.

% metricsdashboard sf_car

15. Click the All Metrics button and run all metrics. The Metrics Dashboard displays
results for the MISRA checks instead of the High Integrity checks.

5 Model Metrics

5-50

16. Close the Metrics Dashboard.

Add a Custom Metric to Dashboard

Create a custom metric that counts nonvirtual blocks. To display this metric on the
Metrics Dashboard, specify a widget. Add it to the size group.

 Customize Metrics Dashboard Layout and Functionality

5-51

1. Using the createNewMetricClass function, create a new metric class named
nonvirtualblockcount. The function creates a file, nonvirtualblockcount.m, in
the current working folder. The file contains a constructor and empty metric algorithm
method. For this example, make sure you are in a writable folder.

className = 'nonvirtualblockcount';
slmetric.metric.createNewMetricClass(className);

2. To write the metric algorithm, open the nonvirtualblockcount.m file and add the
metric to the file. For this example, the file nonvirtualblockcount_orig.m contains
the logic to create a metric that counts the nonvirtual blocks. Copy this file to the to
nonvirtualblockcount.m.

copyfile nonvirtualblockcount_orig.m nonvirtualblockcount.m f

3. Register the new metric in the metric repository.

[id_metric,err_msg] = slmetric.metric.registerMetric(className);

4. Remove the widget that represents the Simulink block count metric. This widget is the
first one in the size group. The size group is second in the layoutWidget array.

sizeGroup = layoutWidget(2);
sizeGroupWidgets = sizeGroup.getWidgets();
sizeGroup.removeWidget(sizeGroupWidgets(1));

5. Add a widget that displays the nonvirtual block count metric. For custom widgets, the
default visualization type is single value. If you want to use a different visualization type,
specify a different value for the VisualizationType property.

newWidget = sizeGroup.addWidget('Custom', 1);
newWidget.Title=('Nonvirtual Block Count');
newWidget.setMetricIDs('nonvirtualblockcount');
newWidget.setWidths(slmetric.dashboard.Width.Medium);
newWidget.setHeight(70);

6. Specify whether there are lines separating the custom widget from other widgets in the
group. These commands specify that there is a line to the right of the widget.

s.top = false;
s.bottom = false;
s.left= false;
s.right= true;
newWidget.setSeparators([s, s, s, s]);

5 Model Metrics

5-52

7. To run the Metrics Dashboard at this point in the example, uncomment out the
following lines of code. The save commands serialize the API information to XML files.
The slmetric.config.setActiveConfiguration and
slmetric.dashboard.setActiveConfiguration commands set the active
configuration objects.

% save(metricconfig,'FileName','MetricConfig.xml');
% save(dashboardconfig,'Filename','DashboardConfig.xml');
% slmetric.config.setActiveConfiguration(fullfile(pwd,'MetricConfig.xml'));
% slmetric.dashboard.setActiveConfiguration(fullfile(pwd,'DashboardConfig.xml'));

8. To open the Metrics Dashboard, uncomment this code.

% metricsdashboard sf_car

9. Click the All Metrics button and run all metrics. The Metrics Dashboard displays
results for the nonvirtual block count metric instead of the Simulink block count metric.

 Customize Metrics Dashboard Layout and Functionality

5-53

10. Close the Metrics Dashboard.

Add Metric Thresholds

For the nonvirtual block count and MISRA metrics, specify metric threshold values.
Specifying these values enables you to access the quality of your model by categorizing
your metric data as follows:

5 Model Metrics

5-54

• Compliant — Metric data that is in an acceptable range.
• Warning — Metric data that requires review.
• Noncompliant — Metric data that requires you to modify your model.

1. Access the slmetric.config.ThresholdConfiguration object in the
slmetric.config.Configuration object metricconfig. Create the corresponding
slmetric.config.ThresholdConfiguration object (TC) in the base workspace.

TC=getThresholdConfigurations(metricconfig);

2. Add two slmetric.config.Threshold objects to TC. Each
slmetric.config.Threshold object contains a default
slmetric.config.Classification object that is compliant. Specify the compliant
metric ranges.

T1=addThreshold(TC,'mathworks.metrics.ModelAdvisorCheckIssues._SYSTEM_By Task_misra_c',...
 'AggregatedValue');
C=getClassifications(T1);
C.Range.Start=-inf;
C.Range.End=0;
C.Range.IncludeStart=0;
C.Range.IncludeEnd=1;

T2=addThreshold(TC,'mathworks.metrics.ModelAdvisorCheckCompliance._SYSTEM_By Task_misra_c',...
 'AggregatedValue');
C=getClassifications(T2);
C.Range.Start=1;
C.Range.End=inf;
C.Range.IncludeStart=1;
C.Range.IncludeEnd=0;

3. For each slmetric.config.Threshold object, specify the Warning ranges.

C=addClassification(T1,'Warning');
C.Range.Start=0;
C.Range.End=inf;
C.Range.IncludeStart=0;
C.Range.IncludeEnd=1;

C=addClassification(T2,'Warning');
C.Range.Start=-inf;
C.Range.End=1;
C.Range.IncludeStart=0;
C.Range.IncludeEnd=0;

 Customize Metrics Dashboard Layout and Functionality

5-55

These commands specify that if the MISRA checks have issues, the model status is
warning. If there are no issues, the model status is compliant.

4. Add a third slmetric.config.Threshold object to TC. Specify compliant, warning,
and noncompliant ranges for this slmetric.config.Threshold object.

T3=addThreshold(TC,'nonvirtualblockcount', 'AggregatedValue');
C=getClassifications(T3);
C.Range.Start=-inf;
C.Range.End=20;
C.Range.IncludeStart=1;
C.Range.IncludeEnd=1;

C=addClassification(T3, 'Warning');
C.Range.Start=20;
C.Range.End=30;
C.Range.IncludeStart=0;
C.Range.IncludeEnd=1;

C=addClassification(T3, 'NonCompliant');
C.Range.Start=30;
C.Range.End=inf;
C.Range.IncludeStart=0;
C.Range.IncludeEnd=1;

These commands specify that the compliant range is less than or equal to 20. The
warning range is from 20 up to but not including 30. The noncompliant range is greater
than 30.

5. Save the configuration objects. These commands serialize the API information to XML
files.

save(metricconfig,'FileName','MetricConfig.xml');
save(dashboardconfig,'Filename','DashboardConfig.xml');

6. Set the active configurations.

slmetric.config.setActiveConfiguration(fullfile(pwd, 'MetricConfig.xml'));
slmetric.dashboard.setActiveConfiguration(fullfile(pwd, 'DashboardConfig.xml'));

7. For your model, open the Metrics Dashboard.

metricsdashboard sf_car

5 Model Metrics

5-56

For the MISRA check compliance issues, the gauge is yellow because 76% of the checks
pass. Any percentage less than 100% is a warning. The bar chart also displays a yellow
because the model contains three MISRA check issues. Any number greater than zero is a
warning.

The Nonvirtual Block Count widget is in the compliant range because there are 15
nonvirtual blocks.

 Customize Metrics Dashboard Layout and Functionality

5-57

8. To reset the configuration and unregister the metric, uncomment and execute these
commands:

% slmetric.metric.unregisterMetric(className);
% slmetric.dashboard.setActiveConfiguration('');
% slmetric.config.setActiveConfiguration('');

See Also
slmetric.dashboard.Configuration | slmetric.config.Configuration

More About
• “Collect Model Metrics”
• “Collect and Explore Metric Data by Using the Metrics Dashboard” on page 5-2

5 Model Metrics

5-58

Overview of Customizing the Model
Advisor

6

Model Advisor Customization
Using Model Advisor APIs and the Model Advisor Configuration Editor, you can:

• Create your own Model Advisor checks.
• Create custom configurations.
• Specify the order in which you make changes to your model.
• Create multiple custom configurations for different projects or modeling guidelines,

and switch between these configurations in the Model Advisor.
• Deploy custom configurations to your users.

To See
Create Model Advisor checks. “Create Model Advisor Checks”
Format check results. “Format Check Results” on page 7-86
Create custom Model Advisor
configurations.

“Create Custom Configurations” on page 8-
2

Specify the order in which you make
changes to your model.

“Organize and Deploy Model Advisor
Checks”

Deploy custom configurations to your users. “Organize and Deploy Model Advisor
Checks”

Verify that models comply with modeling
guidelines.

“Check Model Compliance”

Requirements for Customizing the Model Advisor
Before customizing the Model Advisor:

• If you want to create checks, know how to create a MATLAB script. For more
information, see “Create Scripts” (MATLAB).

• Understand how to access model constructs that you want to check. For example,
know how to find block and model parameters. For more information on using utilities
for creating check callbacks, see “Common Utilities for Creating Checks” on page 7-
5.

6 Overview of Customizing the Model Advisor

6-2

Create Model Advisor Checks

7

Create Model Advisor Checks Workflow
1 On your MATLAB path, create a customization file named sl_customization.m. In

this file, create a sl_customization() function to register the custom checks that
you create with the Model Advisor. For detailed information, see “Register Checks”
on page 7-42.

2 Define custom checks and where they appear in the Model Advisor. For detailed
information, see “Define Custom Checks” on page 7-47.

3 Specify what actions you want the Model Advisor to take for the custom checks by
creating a check callback function for each custom check. For detailed information,
see “Create Callback Functions and Results” on page 7-56.

4 Optionally, specify what automatic fix operations the Model Advisor performs by
creating an action callback function. For detailed information, see “Action Callback
Function” on page 7-65.

7 Create Model Advisor Checks

7-2

Customization File Overview
A customization file is a MATLAB file that you create and name sl_customization.m.
The sl_customization.m file contains a set of functions for registering and defining
custom checks, tasks, and groups. To set up the sl_customization.m file, follow the
guidelines in this table.

Function Description When Required
sl_customization() Registers custom checks, tasks,

folders, and callbacks with the
Simulink customization
manager at start-up. See
“Register Checks” on page 7-
42.

Required for customizations to
the Model Advisor.

One or more check definitions Defines custom checks. See
“Define Custom Checks” on
page 7-47.

Required for custom checks and
to add custom checks to the By
Product folder.

If the By Product folder is not
displayed in the Model Advisor
window, select Show By
Product Folder from the
Settings > Preferences dialog
box.

Check callback functions Defines the actions of the
custom checks. See “Create
Callback Functions and Results”
on page 7-56.

Required for custom checks.
You must write one callback
function for each custom check

One or more calls to check input
parameters

Specifies input parameters to
custom checks. See “Define
Check Input Parameters” on
page 7-51.

Optional

One or more calls to checklist
views

Specifies calls to the Model
Advisor Result Explorer for
custom checks. See “Define
Model Advisor Result Explorer
Views” on page 7-52.

Optional

 Customization File Overview

7-3

Function Description When Required
One or more calls to check
actions

Specifies actions the software
performs for custom checks.
See “Define Check Actions” on
page 7-53 and “Action Callback
Function” on page 7-65.

Optional

This example shows a custom configuration of the model Advisor that has custom checks
defined in custom folders and procedures. The selected check includes input parameters,
list view parameters, and actions.

7 Create Model Advisor Checks

7-4

Common Utilities for Creating Checks
When you create a custom check, there are common Simulink utilities that you can use to
make the check perform different actions. Following is a list of utilities and when to use
them. In the Utility column, click the link for more information about the utility.

Utility Used For...
find_system Getting handle or path to:

• Blocks
• Lines
• Annotations

When getting the object, you can:

• Specify a search depth
• Search under masks and libraries

get_param / set_param Getting and setting system and block
parameter values.

Property Inspector Getting object properties. First you must
get a handle to the object.

evalin Working in the base workspace.
Simulink identifier (SID) Identifying Simulink blocks, model

annotations or Stateflow objects. The SID is
a unique number within the model,
assigned by Simulink. For details, see
“Locate Diagram Components Using
Simulink Identifiers” (Simulink).

Stateflow API (Stateflow) Programmatic access to Stateflow objects.

 Common Utilities for Creating Checks

7-5

Create and Add Custom Checks - Basic Examples
To See
Add a customized check to a Model Advisor
By Product > Demo subfolder.

“Add Custom Check to by Product Folder”
on page 7-6

Create a Model Advisor pass/fail check. “Create Customized Pass/Fail Check” on
page 7-7

Create a Model Advisor pass/fail check with
a fix action.

“Create Customized Pass/Fail Check with
Fix Action” on page 7-10

Create a Model Advisor pass/fail check with
detailed result collections

“Create Customized Pass/Fail Check with
Detailed Result Collections” on page 7-14

Add Custom Check to by Product Folder
This example shows how to add a custom check to a Model Advisor By Product > Demo
subfolder. In this example, the customized check does not check model elements.

1 In your working folder, create the sl_customization.m file. This file registers and
creates the check registration function defineModelAdvisorChecks, which in turn
registers the check callback function SimpleCallback. The function
defineModelAdvisorChecks uses a ModelAdvisor.Root object to define the
check interface.

function sl_customization(cm)

% --- register custom checks
cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

% --- defineModelAdvisorChecks function
function defineModelAdvisorChecks
mdladvRoot = ModelAdvisor.Root;
rec = ModelAdvisor.Check('exampleCheck');
rec.Title = 'Example of a customized check';
rec.TitleTips = 'Added customized check to Product Folder';
rec.setCallbackFcn(@SimpleCallback,'None','StyleOne');
mdladvRoot.publish(rec, 'Demo');

% --- creates SimpleCallback function
function result = SimpleCallback(system);
result={};

2 Close the Model Advisor and your model if either are open.
3 In the Command Window, enter:

7 Create Model Advisor Checks

7-6

Advisor.Manager.refresh_customizations
4 From the MATLAB window, select New > Simulink Model to open a new Simulink

model window.
5 In the Modeling tab, select Model Advisor. A System Selector ― Model Advisor

dialog box opens. Click OK. The Model Advisor opens.
6 In the left pane, expand the By Product folder to display the subfolders. The

customized check Example of a customized check appears in the By Product >
Demo subfolder.

Note If the By Product folder is not displayed in the Model Advisor window, select
SettingsPreferencesShow By Product Folder.

The following commands in the sl_customization.m file create the right pane of
the Model Advisor.

rec.Title = 'Example of a customized check';
rec.TitleTips = 'Added customized check to Product Folder';

Create Customized Pass/Fail Check
This example shows how to create a Model Advisor pass/fail check. In this example, the
Model Advisor checks Constant blocks. If a Constant blocks value is numeric, the check
fails.

1 In your working folder, update the sl_customization.m file. This file registers and
creates the check registration function defineModelAdvisorChecks, which also
registers the check callback function SimpleCallback. The function
SimpleCallback creates a check that finds Constant blocks that have numeric
values. SimpleCallback uses the Model Advisor format template.

 Create and Add Custom Checks - Basic Examples

7-7

function sl_customization(cm)

% --- register custom checks
cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

% --- defineModelAdvisorChecks function
function defineModelAdvisorChecks
mdladvRoot = ModelAdvisor.Root;
rec = ModelAdvisor.Check('exampleCheck');
rec.Title = 'Check Constant block usage';
rec.TitleTips = ['Fail if Constant block value is a number; Pass if' ...
 ' Constant block value is a letter'];
rec.setCallbackFcn(@SimpleCallback,'None','StyleOne')

mdladvRoot.publish(rec, 'Demo');

% --- SimpleCallback function that checks constant blocks
function result = SimpleCallback(system)
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);
result = {};

all_constant_blk=find_system(system,'LookUnderMasks','all',...
 'FollowLinks','on','BlockType','Constant');
blk_with_value=find_system(all_constant_blk,'RegExp','On','Value','^[0-9]');

ft = ModelAdvisor.FormatTemplate('ListTemplate');
ft.setInformation(['This check looks for constant blocks that'...
 ' use numeric values']);
if ~isempty(blk_with_value)
 ft.setSubResultStatusText(['Check has failed. The following '...
 'Constant blocks have numeric values:']);
 ft.setListObj(blk_with_value);
 ft.setSubResultStatus('warn');
 ft.setRecAction('Parameterize the constant block');
 mdladvObj.setCheckResultStatus(false);
else
 ft.setSubResultStatusText(['Check has passed. No constant blocks'...
 ' with numeric values were found.']);
 ft.setSubResultStatus('pass');
 mdladvObj.setCheckResultStatus(true);
end
ft.setSubBar(0);
result{end+1} = ft;

2 Close the Model Advisor and your model if either are open.
3 In the Command Window, enter:

Advisor.Manager.refresh_customizations
4 From the MATLAB window, select New > Simulink Model to open a new Simulink

model window.

7 Create Model Advisor Checks

7-8

5 In the Simulink model window, create two Constant blocks named Const_one and
Const_1. Right-click on a block, choose Block Parameters, and assign the Constant
value as follows:

• For Const_one, set the value to one.
• For Const_1, set the value to 1.

6 Save your model as example2_qs
7 In the Modeling tab, select Model Advisor. A System Selector ― Model Advisor

dialog box opens. Click OK. The Model Advisor opens.
8 In the left pane, select By Product > Demo > Check Constant block usage.

Note If the By Product folder is not displayed in the Model Advisor window, select
SettingsPreferencesShow By Product Folder.

9 Select Run This Check. The Model Advisor check fails for the Const_1 block and
displays a Recommended Action.

The following commands in the sl_customization.m file create the right pane in
the Model Advisor.

Check Constant block usage
rec.Title = 'Check Constant block usage';
rec.TitleTips = ['Fail if Constant block value is a number; Pass if' ...
 ' Constant block value is a letter'];

Recommended Action

ft.setInformation(['This check looks for constant blocks that'...
 ' use numeric values']);
ft.setSubResultStatusText(['Check has failed. The following '...
 'Constant blocks have numeric values:']);

 Create and Add Custom Checks - Basic Examples

7-9

ft.setListObj(blk_with_value);
ft.setSubResultStatus('warn');
ft.setRecAction('Parameterize the constant block');

10 Follow the Recommended Action for fixing the failed Constant block. In the Model
Advisor dialog box:

• Double-click the example2_qs/Const_1 hyperlink.
• Change the Constant value to two, or a nonnumeric value.
• Rerun the Model Advisor check. Both Constant blocks now pass the check.

Create Customized Pass/Fail Check with Fix Action
This example shows how to create a Model Advisor pass/fail check with a fix action. In
this example, the Model Advisor checks Constant blocks. If a Constant block value is
numeric, the check fails. The Model Advisor is also customized to create a fix action for
the failed checks.

1 In your working folder, update the sl_customization.m file. This file contains
three functions, each of which use the Model Advisor format template:

• defineModelAdvisorChecks — Defines the check, creates input parameters,
and defines the fix action.

• simpleCallback — Creates the check callback function that finds Constant
blocks with numeric values.

• simpleActionCallback — Creates the fix for Constant blocks that fail the
check.

function sl_customization(cm)

% --- register custom checks
cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

% --- defineModelAdvisorChecks function
function defineModelAdvisorChecks
mdladvRoot = ModelAdvisor.Root;
rec = ModelAdvisor.Check('exampleCheck');
rec.Title = 'Check Constant block usage';
rec.TitleTips = ['Fail if Constant block value is a number; Pass if '...
 'Constant block value is a letter'];
rec.setCallbackFcn(@SimpleCallback,'None','StyleOne')

% --- input parameters
rec.setInputParametersLayoutGrid([1 1]);
inputParam1 = ModelAdvisor.InputParameter;

7 Create Model Advisor Checks

7-10

inputParam1.Name = 'Text entry example';
inputParam1.Value='VarNm';
inputParam1.Type='String';
inputParam1.Description='sample tooltip';
inputParam1.setRowSpan([1 1]);
inputParam1.setColSpan([1 1]);
rec.setInputParameters({inputParam1});

% -- set fix operation
myAction = ModelAdvisor.Action;
myAction.setCallbackFcn(@simpleActionCallback);
myAction.Name='Fix Constant blocks';
myAction.Description=['Click the button to update all blocks with'...
 ' Text entry example'];
rec.setAction(myAction);

mdladvRoot.publish(rec, 'Demo');

% --- SimpleCallback function that checks constant blocks
function result = SimpleCallback(system)
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);
result = {};

all_constant_blk=find_system(system,'LookUnderMasks','all',...
 'FollowLinks','on','BlockType','Constant');
blk_with_value=find_system(all_constant_blk,'RegExp','On','Value','^[0-9]');

ft = ModelAdvisor.FormatTemplate('ListTemplate');
ft.setInformation(['This check looks for constant blocks that'...
 ' use numeric values']);
if ~isempty(blk_with_value)
 ft.setSubResultStatusText(['Check has failed. The following '...
 'Constant blocks have numeric values:']);
 ft.setListObj(blk_with_value);
 ft.setSubResultStatus('warn');
 ft.setRecAction('Parameterize the constant block');
 mdladvObj.setCheckResultStatus(false);
 mdladvObj.setActionEnable(true);
else
 ft.setSubResultStatusText(['Check has passed. No constant blocks'...
 'with numeric values were found.']);
 ft.setSubResultStatus('pass');
 mdladvObj.setCheckResultStatus(true);
end
ft.setSubBar(0);
result{end+1} = ft;

% --- creates SimpleActionCallback function that fixes failed check
function result = simpleActionCallback(taskobj)
mdladvObj = taskobj.MAObj;
result = {};

system = getfullname(mdladvObj.System);

% Get the string from the input parameter box.

 Create and Add Custom Checks - Basic Examples

7-11

inputParams = mdladvObj.getInputParameters;
textEntryEx = inputParams{1}.Value;

all_constant_blk=find_system(system,'LookUnderMasks','all',...
 'FollowLinks','on','BlockType','Constant');
blk_with_value=find_system(all_constant_blk,'RegExp','On','Value','^[0-9]');
ft = ModelAdvisor.FormatTemplate('TableTemplate');
% Define table col titles
ft.setColTitles({'Block','Old Value','New Value'})
for inx=1:size(blk_with_value)
 oldVal = get_param(blk_with_value{inx},'Value');
 ft.addRow({blk_with_value{inx},oldVal,textEntryEx});
 set_param(blk_with_value{inx},'Value',textEntryEx);
end

ft.setSubBar(0);
result = ft;
mdladvObj.setActionEnable(false);

2 Close the Model Advisor and your model if either are open.
3 At the command prompt, enter:

Advisor.Manager.refresh_customizations
4 From the Command Window, select New > Simulink Model to open a new model.
5 In the Simulink model window, create two Constant blocks named Const_one and

Const_1. Right-click on a block, choose Block Parameters, and assign the Constant
value as follows:

• For Const_one, set the value to one.
• For Const_1, set the value to 1.

6 Save your model as example3_qs.
7 In the Modeling tab, select Model Advisor. A System Selector ― Model Advisor

dialog box opens. Click OK. The Model Advisor opens.
8 In the left pane, select By Product > Demo > Check Constant block usage.
9 Note If the By Product folder is not displayed in the Model Advisor window, select

SettingsPreferencesShow By Product Folder.
10 Select Run This Check. The Model Advisor check fails for the Const_1 block.

The following commands in the sl_customization.m file create the right pane in
the Model Advisor.

7 Create Model Advisor Checks

7-12

Check Constant block usage
rec.Title = 'Check Constant block usage';
rec.TitleTips = ['Fail if Constant block value is a number; Pass if '...
 'Constant block value is a letter'];
rec.setInputParametersLayoutGrid([1 1]);
inputParam1 = ModelAdvisor.InputParameter;
inputParam1.Name = 'Text entry example';
inputParam1.Value='VarNm';
inputParam1.Type='String';
inputParam1.Description='sample tooltip';
inputParam1.setRowSpan([1 1]);
inputParam1.setColSpan([1 1]);
rec.setInputParameters({inputParam1});

Action

myAction.Name='Fix Constant blocks';
myAction.Description=['Click the button to update all blocks with'...
 'Text entry example'];

The Model Advisor box has a Fix Constant blocks button in the Action section of
the Model Advisor dialog box.

11 In the Model Advisor dialog box, enter a nonnumeric value in the Text entry
example parameter field in. In this example, the value is VarNm.

12 Click Fix Constant blocks. The Const_1 Constant block value changes from 1 to
the nonnumeric value that you entered. The Result section of the dialog box lists the
Old Value and New Value of the Const_1 block.

 Create and Add Custom Checks - Basic Examples

7-13

The following commands in the sl_customization.m file create the right pane in
the Model Advisor.

Action

ft = ModelAdvisor.FormatTemplate('TableTemplate');

ft.setColTitles({'Block','Old Value','New Value'})
for inx=1:size(blk_with_value)
 oldVal = get_param(blk_with_value{inx},'Value');
 ft.addRow({blk_with_value{inx},oldVal,textEntryEx});
 set_param(blk_with_value{inx},'Value',textEntryEx);
end

13 In the Model Advisor dialog box, click Run This Check. Both constant blocks now
pass the check.

Create Customized Pass/Fail Check with Detailed Result
Collections
This example shows how to create a Model Advisor check whose results are collected into
a group, such as blocks in a subsystem that violate a check. When a check is not violated,
the results contain the check description and result status. When a check is violated, the
results contain the check description, result status, and the recommended action to fix
the issue. This method is recommended when creating custom Model Advisor checks.

You can review results in the Model Advisor by selecting:

• View By > Recommended Action ─ When a check is violated, this view shows a list
of model elements that violate the check. When there is no violation, this view
provides a brief description stating that the check was not violated.

• View By > Subsystem ─ This view shows a table of model elements that violate the
check, organized by model or subsystem (when applicable).

7 Create Model Advisor Checks

7-14

• View By > Block ─ This view provides a list of check violations for each block.

When a check does not pass, results include a hyperlink to each model element that
violates the check. Use these hyperlinks to easily locate areas in your model or
subsystem.

To create a customized check with detailed result presented as a collection:

1 In your working folder, update the sl_customization.m file as shows in the
example. This file contains three functions specific for creating a check whose results
are presented on the Model Advisor as a collection:

• defineModelAdvisorChecks ─ Defines the check and fix actions. In this
function, the callback style is 'DetailStyle', which is the Model Advisor format
template that presents the results as a collection in the Model Advisor.

• SampleNewCheckStyleCallback ─ Creates the check callback function that
finds blocks whose name is not located below the block. The function uses name
and value pairs to gather the results into collections. See “Check Callback
Function for Detailed Result Collections” on page 7-63.

• sampleActionCB0 ─ Creates the fix for blocks whose name is not located below
the block. In this example, it moves the name below the block. See “Action
Callback Function for Detailed Result Collections” on page 7-66.

function sl_customization(cm)

% -----------------------------
% Register custom checks
cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

% -----------------------------
% Define Model Advisor check "Check whether block names appear
% below blocks".
function defineModelAdvisorChecks
mdladvRoot = ModelAdvisor.Root;
rec = ModelAdvisor.Check('com.mathworks.sample.Check0');
rec.Title = 'Check whether block names appear below blocks
 (recommended check style)';
rec.TitleTips = 'Example new style callback (recommended
 check style)';
rec.setCallbackFcn(@SampleNewCheckStyleCallback,'None',
 'DetailStyle');
% set fix operation
myAction0 = ModelAdvisor.Action;
myAction0.setCallbackFcn(@sampleActionCB0);
myAction0.Name='Make block names appear below blocks';
myAction0.Description='Click the button to place block
 names below blocks';

 Create and Add Custom Checks - Basic Examples

7-15

rec.setAction(myAction0);
mdladvRoot.publish(rec, 'Demo'); % publish check into Demo group.

% -----------------------------
% Callback function for check "Check whether block names appear
% below blocks".
function SampleNewCheckStyleCallback(system, CheckObj)
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system); % get object
% find all blocks whose name does not appear below blocks
violationBlks = find_system(system, 'Type','block',...
 'NamePlacement','alternate',...
 'ShowName', 'on');
if isempty(violationBlks)
 ElementResults = ModelAdvisor.ResultDetail;
 ElementResults.IsInformer = true;
 ElementResults.Description = 'Identify blocks where the name is
 not displayed below the block.';
 ElementResults.Status = 'All blocks have names displayed below
 the block.';
 mdladvObj.setCheckResultStatus(true);
else
 ElementResults(1,numel(violationBlks))=ModelAdvisor.ResultDetail;
 for i=1:numel(ElementResults)
 ElementResults(i).setData(violationBlks{i});
 ElementResults(i).Description = 'Identify blocks where the
 name is not displayed below the block.';
 ElementResults(i).Status = 'The following blocks have names
 that do not display below the blocks:';
 ElementResults(i).RecAction = 'Change the location such that
 the block name is below the block.';
 end
 mdladvObj.setCheckResultStatus(false);
 mdladvObj.setActionEnable(true);
end
CheckObj.setResultDetails(ElementResults);

% -----------------------------
% Action callback function for check "Check whether block names
% appear below blocks".
function result = sampleActionCB0(taskobj)
mdladvObj = taskobj.MAObj;
checkObj = taskobj.Check;
resultDetailObjs = checkObj.ResultDetails;
for i=1:numel(resultDetailObjs)
 % take some action for each of them
 block=Simulink.ID.getHandle(resultDetailObjs(i).Data);
 set_param(block,'NamePlacement','normal');
end
result = ModelAdvisor.Text('Changed the location such that the
block name is below the block.');
mdladvObj.setActionEnable(false);

2 Close the Model Advisor and your model if either are open.
3 In the MATLAB command window, enter:

7 Create Model Advisor Checks

7-16

Advisor.Manager.refresh_customizations
4 From the MATLAB window, open model sldemo_fuelsys.
5 In the Simulink model window:

• In the top model, right-click the Engine Speed block and select Rotate & Flip >
Flip Block Name.

• Open the fuel_rate_control subsystem. Right-click the
validate_sample_time block and select Rotate & Flip > Flip Block Name.

Return to the top model and save as example_sldemo_fuelsys.
6 In the Modeling tab, select Model Advisor. A System Selector ― Model Advisor

dialog box opens. Click OK. The Model Advisor opens.
7 In the left pane, select By Product > Demo > Check whether block names

appear below blocks.

Note If the By Product folder is not displayed in the Model Advisor window, select
SettingsPreferencesShow By Product Folder.

8 Select Run This Check. The Model Advisor check fails for the blocks.
9 Review the results by selecting one of the View by options.

 Create and Add Custom Checks - Basic Examples

7-17

The report provides a recommended action for each check. You can click the
hyperlink path to open the violating block in the model editor. For example,

The following commands in the sl_customization.m file create the right pane in
the Model Advisor.

Check title and subtitle
rec.Title = 'Check whether block names appear below blocks
 (recommended check style)';
rec.TitleTips = 'Example new style callback (recommended
 check style)';

Result
ElementResults(i).Description = 'Identify blocks where the name is
 not displayed below the block.';
ElementResults(i).Status = 'The following blocks have names that do
 not display below the blocks:';

7 Create Model Advisor Checks

7-18

ElementResults(i).RecAction = 'Change the location such that the block
 name is below the block.';

Action
myAction0.Name='Make block names appear below blocks';
myAction0.Description='Click the button to place block names
 below blocks';

10 Follow the recommended action for fixing the violating blocks by using one of these
methods:

• Update each violation individually by double-clicking the hyperlink to open the
block. Right-click the block and select Rotate & Flip > Flip Block Name.

• Select the Make block names appear below blocks button. The Model Advisor
automatically fixes the issues in the model. Notice that the button is greyed out
after the violations are fixed.

11 Save the model and rerun the Model Advisor check. The check passes.

The following commands in the sl_customization.m file create the right pane in
the Model Advisor.

Result
ElementResults.Description = 'Identify blocks where the name is not
 displayed below the block.';
ElementResults.Status = 'All blocks have names displayed below the block.';

 Create and Add Custom Checks - Basic Examples

7-19

See Also
ModelAdvisor.FormatTemplate | ModelAdvisor.Check |
ModelAdvisor.Check.CallbackContext | ModelAdvisor.FormatTemplate

More About
• “Register Checks” on page 7-42
• “Define Check Input Parameters” on page 7-51
• “Check Callback Function for Detailed Result Collections” on page 7-63
• “Action Callback Function for Detailed Result Collections” on page 7-66
• “Define, Configure, and Activate Variants” (Simulink)
• “Create and Validate Variant Configurations” (Simulink)
• “Represent Subsystem and Variant Models in Generated Code” (Embedded Coder)
• “Define the Compile Option for Custom Checks” on page 7-72

7 Create Model Advisor Checks

7-20

Create Check for Model Configuration Parameters
To verify the configuration parameters for your model, you can create a configuration
parameter check.

Decide which configuration parameter settings to use for your model. If desired, review
the modelling guidelines:

• MathWorks Automotive Advisory Board (MAAB) Control Algorithm Modeling
Guidelines (Simulink)

• High-Integrity System Modeling Guidelines (Simulink)
• Code Generation Modeling Guidelines (Simulink)

1 Create an XML data file containing the configuration parameter settings you want to
check. You can use
Advisor.authoring.generateConfigurationParameterDataFile or
manually create the file yourself.

2 Register the model configuration parameter check using an sl_customization.m
file.

3 Run the check on your models.

Create a Data File for a Configuration Parameter Check
This example shows how to create a data file that specifies configuration parameter
values in the Diagnostics pane. A custom check warns when the configuration
parameters values do not match the values defined in the data file.

At the command prompt, type vdp to open the van der Pol Equation model.

Right-click in the model window and select Model Configuration Parameters. In the
Diagnostics pane, set the configuration parameters as follows:

• Algebraic loop to none
• Minimize algebraic loop to error
• Block Priority Violation to error

Use the Advisor.authoring.generateConfigurationParameterDataFile
function to create a data file specifying configuration parameter constraints in the

 Create Check for Model Configuration Parameters

7-21

matlab: vdp

Diagnostics pane. Also, to create a check with a fix action, set FixValue to true. At the
command prompt, type:
model='vdp';
dataFileName = 'ex_DataFile.xml';
Advisor.authoring.generateConfigurationParameterDataFile(dataFileName,...
model, 'Pane', 'Diagnostics', 'FixValues', true);

In the Command Window, select ex_DataFile.xml. The data file opens in the MATLAB
editor.

• The Minimize algebraic loop (ArtificialAlgebraicLoopMsg) configuration
parameter tagging specifies a value of error with a fixvalue of error. When you
run the configuration parameter check using ex_DataFile.xml, the check fails if the
Minimize algebraic loop setting is not error. The check fix action modifies the
setting to error.

• The Block Priority Violation (BlockPriorityViolationMsg) configuration
parameter tagging specifies a value of error with a fixvalue of error. When you
run the configuration parameter check using ex_DataFile.xml, the check fails if the
Block Priority Violation setting is not error. The check fix action modifies the
setting to error.

In ex_DataFile.xml, edit the Algebraic loop (AlgebraicLoopMsg) parameter tagging
so that the check warns if the value is none. Because you are specifying a configuration
parameter that you do not want, you need a NegativeModelParameterConstraint.
Also, to create a subcheck that does not have a fix action, remove the line with
<fixvalue> tagging. The tagging for the configuration parameter looks as follows:

<!-- Algebraic loop: (AlgebraicLoopMsg)-->
 <NegativeModelParameterConstraint>
 <parameter>AlgebraicLoopMsg</parameter>
 <value>none</value>
 </NegativeModelParameterConstraint>

In ex_DataFile.xml, delete the lines with tagging for configuration parameters that
you do not want to check. The data file ex_DataFile.xml provides tagging only for
Algebraic loop, Minimize algebraic loop, and Block Priority Violation. For example,
ex_DataFile.xml looks similar to:

<?xml version="1.0" encoding="utf-8"?>
<customcheck xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://www.w3schools.com
MySchema.xsd">
 <checkdata>

7 Create Model Advisor Checks

7-22

 <!-- Algebraic loop: (AlgebraicLoopMsg)-->
 <NegativeModelParameterConstraint>
 <parameter>AlgebraicLoopMsg</parameter>
 <value>none</value>
 </NegativeModelParameterConstraint>
 <!--Minimize algebraic loop: (ArtificialAlgebraicLoopMsg)-->
 <PositiveModelParameterConstraint>
 <parameter>ArtificialAlgebraicLoopMsg</parameter>
 <value>error</value>
 <fixvalue>error</fixvalue>
 </PositiveModelParameterConstraint>
 <!--Block priority violation: (BlockPriorityViolationMsg)-->
 <PositiveModelParameterConstraint>
 <parameter>BlockPriorityViolationMsg</parameter>
 <value>error</value>
 <fixvalue>error</fixvalue>
 </PositiveModelParameterConstraint>
 </checkdata>
</customcheck>

Verify the data syntax with Advisor.authoring.DataFile.validate. At the
command prompt, type:

dataFile = 'myDataFile.xml';
msg = Advisor.authoring.DataFile.validate(dataFile);

if isempty(msg)
 disp('Data file passed the XSD schema validation.');
else
 disp(msg);
end

Create Check for Diagnostics Pane Model Configuration
Parameters
This example shows how to create a check for Diagnostics pane model configuration
parameters using a data file and an sl_customization.m file. First, you register the
check using an sl_customization.m file. Using ex_DataFile.xml, the check warns
when:

• Algebraic loop is set to none
• Minimize algebraic loop is not set to error

 Create Check for Model Configuration Parameters

7-23

• Block Priority Violation is not set to error

The check fix action modifies the Minimize algebraic loop and Block Priority
Violation parameter settings to error.

The check uses the ex_DataFile.xml data file created in “Create a Data File for a
Configuration Parameter Check” on page 7-21.

Close the Model Advisor and your model if either are open.

Use the following sl_customization.m file to specify and register check Example:
Check model configuration parameters.
function sl_customization(cm)

% register custom checks.
cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

% register items to factory group.
cm.addModelAdvisorTaskFcn(@defineModelAdvisorGroups);

%% defineModelAdvisorChecks
function defineModelAdvisorChecks

 rec = ModelAdvisor.Check('com.mathworks.Check1');
 rec.Title = 'Example: Check model configuration parameters';
 rec.setCallbackFcn(@(system)(Advisor.authoring.CustomCheck.checkCallback...
 (system)), 'None', 'StyleOne');
 rec.TitleTips = 'Example check for model configuration parameters';

 % --- data file input parameters
 rec.setInputParametersLayoutGrid([1 1]);
 inputParam1 = ModelAdvisor.InputParameter;
 inputParam1.Name = 'Data File';
 inputParam1.Value = 'ex_DataFile.xml';
 inputParam1.Type = 'String';
 inputParam1.Description = 'Name or full path of XML data file.';
 inputParam1.setRowSpan([1 1]);
 inputParam1.setColSpan([1 1]);
 rec.setInputParameters({inputParam1});

 % -- set fix operation
 act = ModelAdvisor.Action;
 act.setCallbackFcn(@(task)(Advisor.authoring.CustomCheck.actionCallback...
 (task)));
 act.Name = 'Modify Settings';
 act.Description = 'Modify model configuration settings.';
 rec.setAction(act);

 mdladvRoot = ModelAdvisor.Root;
 mdladvRoot.register(rec);

7 Create Model Advisor Checks

7-24

%% defineModelAdvisorGroups
function defineModelAdvisorGroups
mdladvRoot = ModelAdvisor.Root;

% --- sample factory group 1
rec = ModelAdvisor.FactoryGroup('com.mathworks.Test.factoryGroup');
rec.DisplayName='Example: My Group';
rec.addCheck('com.mathworks.Check1');
mdladvRoot.publish(rec);

Create the Example: Check model configuration parameters. At the command
prompt, enter:

Advisor.Manager.refresh_customizations

At the command prompt, type vdp to open the van der Pol Equation model.

Right-click in the model window and select Model Configuration Parameters. In the
Diagnostics pane, set the configuration parameters as follows:

• Algebraic loop to none
• Minimize algebraic loop to warning
• Block Priority Violation to warning

In the Modeling tab, select Model Advisor to open the Model Advisor.

In the left pane, select By Task > Example: My Group > Example: Check model
configuration parameters. In the right pane, Data File is set to ex_DataFile.xml.

Click Run This Check. The Model Advisor check warns that the configuration
parameters are not set to the values specified in ex_DataFile.xml. For configuration
parameters with positive constraint tagging (PositiveModelParameterConstraint),
the recommended values are obtained from the value tagging. For configuration
parameters with negative constraint tagging (NegativeModelParameterConstraint),
the values not recommended are obtained from the value tagging.

• Algebraic loop(AlgebraicLoopMsg) - the ex_DataFile.xml tagging does not
specify a fix action for AlgebraicLoopMsg. The subcheck passes only when the
setting is not set to none.

• Minimize algebraic loop(ArtificialAlgebraicLoopMsg) - the
ex_DataFile.xml tagging specifies a subcheck with a fix action for
ArtificialAlgebraicLoopMsg that passes only when the setting is error. The fix
action modifies the setting to error.

 Create Check for Model Configuration Parameters

7-25

matlab: vdp

• Block priority violation(BlockPriorityViolationMsg) - the ex_DataFile.xml
tagging specifies a subcheck with a fix action for BlockPriorityViolationMsg that
does not pass when the setting is warning. The fix action modifies the setting to
error.

In the Action section of the Model Advisor dialog box, click Modify Settings. Model
Advisor updates the configuration parameters for Block priority violation and
Minimize algebraic loop.

Run By Task > Example: My Group > Example: Check model configuration
parameters. The check warns because Algebraic loop is set to none.

In the right pane of the Model Advisor window, use the Algebraic loop
(AlgebraicLoopMsg) link to edit the configuration parameter. Set Algebraic loop to
warning or error.

Run By Task > Example: My Group > Example: Check model configuration
parameters. The check passes.

Data File for Configuration Parameter Check
You use an XML data file to create a configuration parameter check. To create the data
file, you can use Advisor.authoring.generateConfigurationParameterDataFile
or manually create the file yourself. The data file contains tagging that specifies check
behavior. Each model configuration parameter specified in the data file is a subcheck. The
structure for the data file is as follows:
<?xml version="1.0" encoding="utf-8"?>
<customcheck xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://www.w3schools.com
MySchema.xsd">
 <messages>
 <Description>Description of check</Description>
 <PassMessage>Pass message</PassMessage>
 <FailMessage>Fail message</FailMessage>
 <RecommendedActions>Recommended action</RecommendedActions>
 </messages>
 <checkdata>
 <!--Command line name of configuration parameter-->
 <PositiveModelParameterConstraint>
 <parameter>Command-line name of configuration parameter</parameter>
 <value>Value that you want configuration parameter to have</value>
 <fixvalue>Specify value for a fix action</fixvalue>
 <dependson>ID of configuration parameter subcheck that must pass
 before this subcheck runs</value>
 </PositiveModelParameterConstraint>

7 Create Model Advisor Checks

7-26

 <!-- Command line name of configuration parameter-->
 <NegativeModelParameterConstraint>
 <parameter>Command line name of configuration parameter</parameter>
 <value>Value that you do not want configuration parameter to have</value>
 <fixvalue>Specify value for a fix action</fixvalue>
 <dependson>ID of configuration parameter subcheck that must pass
 before this subcheck runs</value>
 </NegativeModelParameterConstraint>
 </checkdata>
</customcheck>

The <messages> tag contains:

• Description - (Optional) Description of the check. Displayed in Model Advisor
window.

• PassMessage - (Optional) Pass message displayed in Model Advisor window.
• FailMessage - (Optional) Fail message displayed in Model Advisor window.
• RecommendedActions - (Optional) Recommended actions displayed in Model Advisor

window when check does not pass.

Note The <messages> tag is optional.
Advisor.authoring.generateConfigurationParameterDataFile does not
generate <messages> tagging.

In the <checkdata> tag, the data file specifies two types of constraints:

• PositiveModelParameterConstraint - Specifies the configuration parameter
setting that you want.

• NegativeModelParameterConstraint - Specifies the configuration parameter
setting that you do not want.

Within the tag for each of the two types of constraints, for each configuration parameter
that you want to check, the data file has the following tags:

• parameter - Specifies the configuration parameter that you want to check. The
tagging uses the command line name for the configuration parameter. For example:

<PositiveModelParameterConstraint>
 <parameter>BlockPriorityViolationMsg</parameter>
</PositiveModelParameterConstraint>
<NegativeModelParameterConstraint>
 <parameter>AlgebraicLoopMsg</parameter>
</NegativeModelParameterConstraint>

 Create Check for Model Configuration Parameters

7-27

• value - Specifies the setting(s) for the configuration parameter. You can specify more
than one value tag.

When using PositiveModelParameterConstraint, value specifies the setting(s)
that you want for the configuration parameter. For
NegativeModelParameterConstraint, value specifies the setting(s) you that do
not want for the configuration parameter.

You can specify the value using a format in this table.

Type Format Example
Scalar value <value>xyz</value> In this example, constraint

NegativeModelParameterConstrain
t warns when the configuration
parameter settings for configuration
parameter is not error or none .

<NegattiveModelParameterConstraint>
 <value>error</value>
 <value>none</value>
</NegativeModelParameterConstraint>

Structure or
object

<value>
 <param1>xyz</param1>
 <param2>yza</param2>
</value>

In this example, constraints
PositiveModelParameterConstrain
t warns when the configuration
parameter settings are not a valid
structure:

<PositiveModelParameterConstraint>
 <value>
 <double>a</double>
 <single>b</single>
 </value>
</PositiveModelParameterConstraint>

7 Create Model Advisor Checks

7-28

Type Format Example
Array <value>

 <element>value</element>
 <element>value</element>
</value>

In this example, constraint
NegativeModelParameterConstrain
t warns when the configuration
parameter settings are an invalid array:

<NegativeModelParameterConstraint>
 <value>
 <element>A</element>
 <element>B</element>
 </value>
</NegativeModelParameterConstraint>

Structure
Array

<value>
 <element>
 <param1>xyz</param1>
 <param2>yza</param2>
 </element>
 <element>
 <param1>xyz</param1>
 <param2>yza</param2>
 </element>
</value>

In this example, constraint
NegativeModelParameterConstrain
t warns when the configuration
parameter settings are an invalid
structure array:

<NegativeModelParameterConstraint>
 <value>
 <element>
 <double>a</double>
 <single>b</single>
 </element>
 <element>
 <double>a</double>
 <single>b</single>
 </element>
 </value>
</NegativeModelParameterConstraint>

• fixvalue - (Optional) Specifies the setting to use when applying the Model Advisor
fix action.

You can specify the fixvalue using a format in this table.

 Create Check for Model Configuration Parameters

7-29

Type Format Example
Scalar value <fixvalue>xyz</fixvalue>In this example, the fix action tag

specifies the new configuration
parameter setting as warning.

<PositiveModelParameterConstraint>
 <value>error</value>
 <fixaction>warning</fixaction>
</PositiveModelParameterConstraint>

Structure or
object

<fixvalue>
 <param1>xyz</param1>
 <param2>yza</param2>
</fixvalue>

In this example, the fix action tag
specifies the new configuration
parameter setting for a structure.

<PositiveModelParameterConstraint>
 <value>
 <double>a</double>
 <single>b</single>
 </value>
 <fixvalue>
 <double>c</double>
 <single>d</single>
 </fixvalue>
</PositiveModelParameterConstraint>

Array <fixvalue>
 <element>value</element>
 <element>value</element>
</fixvalue>

In this example, the fix action tag
specifies the new configuration
parameter setting for an array.

<NegativeModelParameterConstraint>
 <value>
 <element>A</element>
 <element>B</element>
 </value>
 <fixvalue>
 <element>C</element>
 <element>D</element>
 </fixvalue>
</NegativeModelParameterConstraint>

7 Create Model Advisor Checks

7-30

Type Format Example
Structure
Array

<fixvalue>
 <element>
 <param1>xyz</param1>
 <param2>yza</param2>
 </element>
 <element>
 <param1>xyz</param1>
 <param2>yza</param2>
 </element>
</fixvalue>

In this example, the fix action tag
specifies the new configuration
parameter settings for a structure array.

<NegativeModelParameterConstraint>
 <value>
 <element>
 <double>a</double>
 <single>b</single>
 </element>
 <element>
 <double>a</double>
 <single>b</single>
 </element>
 </value>
 <fixvalue>
 <element>
 <double>c</double>
 <single>d</single>
 </element>
 <element>
 <double>c</double>
 <single>d</single>
 </element>
 </fixvalue>
</NegativeModelParameterConstraint>

• dependson - (Optional) Specifies a prerequisite subcheck.

In this example, dependson specifies that configuration parameter subcheck ID_B
must pass before configuration parameter subcheck ID_A runs.

<PositiveModelParameterConstraint id="ID_A">
 <dependson>ID_B</value>
</PostitiveModelParameterConstraint>

Data file tagging specifying a configuration parameter

The following tagging specifies a subcheck for configuration parameter SolverType. If
the configuration parameter is set to Fixed-Step, the subcheck passes.

<PositiveModelParameterConstraint id="ID_A">
 <parameter>SolverType</parameter>

 Create Check for Model Configuration Parameters

7-31

 <value>Fixed-step</value>
</PostitiveModelParameterConstraint>

Data file tagging specifying configuration parameter with fix action

The following tagging specifies a subcheck for configuration parameter
AlgebraicLoopMsg. If the configuration parameter is set to none or warning, the
subcheck passes. If the subcheck does not pass, the check fix action modifies the
configuration parameter to error.

<PositiveModelParameterConstraint id="ID_A">
 <parameter>AlgebraicLoopMsg</parameter>
 <value>none</value>
 <value>warning</value>
 <fixvalue>error</value>
</PostitiveModelParameterConstraint>

Data file tagging specifying an array type configuration parameter
<PositiveModelParameterConstraint id="A">
 <parameter>ReservedNameArray</parameter>
 <value>
 <element>A</element>
 <element>B</element>
 </value>
 <value>
 <element>A</element>
 <element>C</element>
 </value>
</PositiveModelParameterConstraint>

Data file tagging specifying a structure type configuration parameter with fix
action
<PositiveModelParameterConstraint id="A">
 <parameter>ReplacementTypes</parameter>
 <value>
 <double>a</double>
 <single>b</single>
 </value>
 <value>
 <double>c</double>
 <single>b</single>
 </value>
 <fixvalue>

7 Create Model Advisor Checks

7-32

 <double>a</double>
 <single>b</single>
 </fixvalue>
</PositiveModelParameterConstraint>

Data file tagging specifying configuration parameter with fix action and
prerequisite check

The following tagging specifies a subcheck for configuration parameter SolverType. The
subcheck for SolverType runs only after the ID_B subcheck passes. If theID_B
subcheck does not pass, the subcheck for SolverType does not run. The Model Advisor
reports that the prerequisite constraint is not met.

If the SolverType subcheck runs and SolverType is set to Fixed-Step, the
SolverType subcheck passes. If the subcheck runs and does not pass, the check fix
action modifies the configuration parameter to Fixed-Step.

<PositiveModelParameterConstraint id="ID_A">
 <parameter>SolverType</parameter>
 <value>Fixed-step</value>
 <fixvalue>Fixed-step</value>
 <dependson>ID_B</value>
</PostitiveModelParameterConstraint>

Data file tagging specifying unwanted configuration parameter

The following tagging specifies a subcheck for configuration parameter SolverType. The
subcheck does not pass if the configuration parameter is set to Fixed-Step.

<NegativeModelParameterConstraint id="ID_A">
 <parameter>SolverType</parameter>
 <value>Fixed-step</value>
</NegativeModelParameterConstraint>

Data file tagging specifying unwanted configuration parameter with fix action

The following tagging specifies a subcheck for configuration parameter SolverType. If
the configuration parameter is set to Fixed-Step, the subcheck does not pass . If the
subcheck does not pass, the check fix action modifies the configuration parameter to
Variable-Step.

<NegativeModelParameterConstraint id="ID_A">
 <parameter>SolverType</parameter>
 <value>Fixed-step</value>

 Create Check for Model Configuration Parameters

7-33

 <fixvalue>Variable-step</value>
</NegativeModelParameterConstraint>

Data file tagging specifying unwanted configuration parameter with fix action
and prerequisite check

The following tagging specifies a check for configuration parameter SolverType. The
subcheck for SolverType runs only after the ID_B subcheck passes. If theID_B
subcheck does not pass, the subcheck for SolverType does not run. The Model Advisor
reports that the prerequisite constraint is not met.

If the SolverType subcheck runs and SolverType is set to Fixed-Step, the subcheck
does not pass. The check fix action modifies the configuration parameter to Variable-
Step.

<NegativeModelParameterConstraint id="ID_A">
 <parameter>SolverType</parameter>
 <value>Fixed-step</value>
 <fixvalue>Variable-step</value>
 <dependson>ID_B</value>
</NegativeModelParameterConstraint>

See Also
Advisor.authoring.CustomCheck.actionCallback |
Advisor.authoring.CustomCheck.checkCallback |
Advisor.authoring.DataFile.validate |
Advisor.authoring.generateConfigurationParameterDataFile

More About
• “Organize and Deploy Model Advisor Checks”

7 Create Model Advisor Checks

7-34

Define Checks for Supported or Unsupported Blocks and
Parameters

For modeling guidelines that require you to use a subset of block or parameter values,
you can create Model Advisor checks in which you specify these constraints:

• Supported or unsupported block parameter values
• Supported or unsupported model parameter values
• Supported or unsupported blocks
• Check for whether blocks or parameters meet a combination of constraints

You can also create constraints that check for prerequisite constraints before checking
the actual constraint. You can check your model against these constraints as you edit or
run the checks interactively after you complete your model design.

Example
The sldemo_bounce model simulates a ball bouncing on Earth. In this example, you
create two Model Advisor checks consisting of constraints. Then, check your model
against those constraints.

 Define Checks for Supported or Unsupported Blocks and Parameters

7-35

Create Block Parameter Constraints
1 Create these block parameter constraints:

c1=Advisor.authoring.PositiveBlockParameterConstraint;
c1.ID='ID_1';
c1.BlockType='Gain';
c1.ParameterName='Gain';
c1.SupportedParameterValues={'-.7'};
c1.ValueOperator='eq';

c2=Advisor.authoring.NegativeBlockParameterConstraint;
c2.ID='ID_2';
c2.BlockType='InitialCondition';
c2.ParameterName='Value';
c2.UnsupportedParameterValues={'0'};
c2.ValueOperator='le';

Constraint c1 specifies that a Gain block must have a value equal to -.7. Constraint
c2 specifies that the Initial Condition block must have a value less than or equal to
zero.

7 Create Model Advisor Checks

7-36

2 Create this positive model parameter constraint.

c3=Advisor.authoring.PositiveModelParameterConstraint;
c3.ID='ID_3';
c3.ParameterName='SolverType';
c3.SupportedParameterValues={'Variable-step'};

Constraint c3 specifies that the Solver parameter must be equal to Variable-step.
3 Create this positive block type constraint:

c4=Advisor.authoring.PositiveBlockTypeConstraint;
c4.ID='ID_5';
s1=struct('BlockType','Constant','MaskType','');
s2=struct('BlockType','Subsystem','MaskType','');
s3=struct('BlockType','InitialCondition','MaskType','');
s4=struct('BlockType','Gain','MaskType','');
s5=struct('BlockType','Memory','MaskType','');
s6=struct('BlockType','SecondOrderIntegrator','MaskType','');
s7=struct('BlockType','Terminator','MaskType','');
c4.SupportedBlockTypes={s1;s2;s3;s4;s5;s6;s7;};
c4.addPreRequisiteConstraintID('ID_3');

Constraint c4 specifies the supported blocks. Constraint c3 is a prerequisite to c4
meaning that the Model Advisor only checks c4 if c3 passes.

4 Create a data file that contains these constraints. This data file corresponds to one
Model Advisor check.
Advisor.authoring.generateBlockConstraintsDataFile(...
 'sldemo_constraints_1.xml','constraints',{c1,c2,c3,c4});

The data file contains tagging specifically for constraints.
<?xml version="1.0" encoding="utf-8"?>
<customcheck>
 <checkdata>
 <PositiveBlockParameterConstraint BlockType="Gain" id="ID_1">
 <parameter type="string">Gain</parameter>
 <value>-.7</value>
 <operator>eq</operator>
 </PositiveBlockParameterConstraint>
 <NegativeBlockParameterConstraint BlockType="InitialCondition" id="ID_2">
 <parameter type="string">Value</parameter>
 <value>0</value>
 <operator>le</operator>
 </NegativeBlockParameterConstraint>
 <PositiveModelParameterConstraint id="ID_3">
 <parameter type="enum">SolverType</parameter>
 <value>Variable-step</value>
 </PositiveModelParameterConstraint>
 <PositiveBlockTypeConstraint id="ID_5">

 Define Checks for Supported or Unsupported Blocks and Parameters

7-37

 <BlockType MaskType="">Constant</BlockType>
 <BlockType MaskType="">Subsystem</BlockType>
 <BlockType MaskType="">InitialCondition</BlockType>
 <BlockType MaskType="">Gain</BlockType>
 <BlockType MaskType="">Memory</BlockType>
 <BlockType MaskType="">SecondOrderIntegrator</BlockType>
 <BlockType MaskType="">Terminator</BlockType>
 <dependson>ID_3</dependson>
 </PositiveBlockTypeConstraint>
 <CompositeConstraint>
 <ID>ID_1</ID>
 <ID>ID_2</ID>
 <ID>ID_5</ID>
 <operator>and</operator>
 </CompositeConstraint>
 </checkdata>
</customcheck>

Note For model configuration parameter constraints, use the
Advisor.authoring.generateBlockConstraintsDataFile method only when
specifying model configuration parameter constraints as prerequisites to block
constraints or as part of a composite constraint consisting of block and model
configuration parameter constraints. For other cases, use the
Advisor_authoring.generateConfigurationParameterDatafile method.

5 Create two block parameter constraints and a composite constraint.

cc1=Advisor.authoring.PositiveBlockParameterConstraint;
cc1.ID='ID_cc1';
cc1.BlockType='SecondOrderIntegrator';
cc1.ParameterName='UpperLimitX';
cc1.SupportedParameterValues={'inf'};
cc1.ValueOperator='eq';

cc2=Advisor.authoring.PositiveBlockParameterConstraint;
cc2.ID='ID_cc2';
cc2.BlockType='SecondOrderIntegrator';
cc2.ParameterName='LowerLimitX';
cc2.SupportedParameterValues={'0.0'};
cc2.ValueOperator='eq';

cc=Advisor.authoring.CompositeConstraint;
cc.addConstraintID('ID_cc1');
cc.addConstraintID('ID_cc2');
cc.CompositeOperator='and';

Constraint cc1 specifies that for a Second-Order Integrator block, the Upper limit x
parameter must have a value equal to inf. Constraint cc2 specifies that for a

7 Create Model Advisor Checks

7-38

Second-Order Integrator block, the Lower limit x parameter must have a value
equal to zero. Constraint cc specifies that for this check to pass, both cc1 and cc2
have to pass.

6 Create a data file that contains these constraints. This data file corresponds to a
second Model Advisor check.

Advisor.authoring.generateBlockConstraintsDataFile(...
 'sldemo_constraints_2.xml','constraints',{cc1,cc2,cc});

Create Model Advisor Checks from Constraints
1 To specify and register these checks, use this sl_customization.m file.

function sl_customization(cm)

% register custom checks.
cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

% register items to factory group.
cm.addModelAdvisorTaskFcn(@defineModelAdvisorGroups);

% defineModelAdvisorChecks
function defineModelAdvisorChecks

% check1
rec = Advisor.authoring.createBlockConstraintCheck('mathworks.check_0001');
rec.Title = 'Example1: Check block parameter constraints';
rec.setCallbackFcn(@(system)(Advisor.authoring.CustomCheck.checkCallback...
 (system)), 'None', 'StyleOne');
rec.TitleTips = 'Example check block parameter constraints';

% --- data file input parameters
rec.setInputParametersLayoutGrid([1 1]);
inputParam1 = ModelAdvisor.InputParameter;
inputParam1.Name = 'Data File';
inputParam1.Value = 'sldemo_constraints_1.xml';
inputParam1.Type = 'String';
inputParam1.Description = 'Name or full path of XML data file.';
inputParam1.setRowSpan([1 1]);
inputParam1.setColSpan([1 1]);
rec.setInputParameters({inputParam1});
rec.SupportExclusion = false;
rec.SupportLibrary = true;

% check2
rec1 = Advisor.authoring.createBlockConstraintCheck('mathworks.check_0002');
rec1.Title = 'Example2: Check block parameter constraints';
rec1.setCallbackFcn(@(system)(Advisor.authoring.CustomCheck.checkCallback...
 (system)), 'None', 'StyleOne');
rec1.TitleTips = 'Example check block parameter constraints';

% --- data file input parameters
rec1.setInputParametersLayoutGrid([1 1]);
inputParam1 = ModelAdvisor.InputParameter;
inputParam1.Name = 'Data File';

 Define Checks for Supported or Unsupported Blocks and Parameters

7-39

inputParam1.Value = 'sldemo_constraints_2.xml';
inputParam1.Type = 'String';
inputParam1.Description = 'Name or full path of XML data file.';
inputParam1.setRowSpan([1 1]);
inputParam1.setColSpan([1 1]);
rec1.setInputParameters({inputParam1});
rec1.SupportExclusion = false;
rec1.SupportLibrary = true;
mdladvRoot = ModelAdvisor.Root;
mdladvRoot.register(rec);
mdladvRoot.register(rec1);

%% defineModelAdvisorGroups
function defineModelAdvisorGroups
mdladvRoot = ModelAdvisor.Root;

% --- sample factory group 1
rec = ModelAdvisor.FactoryGroup('com.mathworks.Test.factoryGroup');
rec.DisplayName='Example: My Group';
rec.addCheck('mathworks.check_0001');
rec.addCheck('mathworks.check_0002');

mdladvRoot.publish(rec);

You must use the Advisor.authoring.createBlockConstraintCheck function
to create the ModelAdvisor.Check object and specify the constraint data file as an
input parameter to this object.

2 At the command prompt, type create the Example1: Check block parameter
constraints and Example2: Check block parameter constraints checks by typing
this command:

Advisor.Manager.refresh_customizations

3 At the command prompt, type sldemo_bounce.
4 In the Modeling tab, select Model Advisor to open the Model Advisor.
5 In the left pane, select By Task > Example: My Group. For each check, in the right

pane, the Data File parameters are set to the data files that you previously created.
6 Click Run Selected Checks.
7 The Example1: Check block parameter constraints check produces a warning

because the Gain block has a value of -0.8 not -0.7. The Example2: Check block
parameter constraints check passes because the Second-Order Integrator block
meets both constraints.

You can use edit-time checking for custom checks that define block and parameter
constraints. To enable edit-time checking, in the Model Advisor Configuration Editor,
select the checks that contain the constraints. For more information on edit-time
checking, see “Check Model Compliance by Using the Model Advisor” on page 3-2.

7 Create Model Advisor Checks

7-40

See Also
Advisor.authoring.generateBlockConstraintsDataFile |
NegativeBlockParameterConstraint | NegativeBlockTypeConstraint |
NegativeModelParameterConstraint | PositiveBlockParameterConstraint |
PositiveBlockTypeConstraint | PositiveModelParameterConstraint

 See Also

7-41

Register Checks

Create sl_customization Function
To add checks to the Model Advisor, on your MATLAB path, in the sl_customization.m
file, create the sl_customization() function.

Tip

• You can have more than one sl_customization.m file on your MATLAB path.
• Do not place an sl_customization.m file that customizes checks and folders in the

Model Advisor in your root MATLAB folder or its subfolders, except for the
matlabroot/work folder. Otherwise, the Model Advisor ignores the customizations
that the file specifies.

The sl_customization function accepts one argument, a customization manager
object, as in this example:

function sl_customization(cm)

The customization manager object includes methods for registering custom checks. Use
these methods to register customizations specific to your application, as described in the
following sections.

Register Checks
To register custom checks, the customization manager includes the following method:

• addModelAdvisorCheckFcn (@checkDefinitionFcn)

Registers the checks that you define in checkDefinitionFcn to the By Product
folder of the Model Advisor.

The checkDefinitionFcn argument is a handle to the function that defines custom
checks that you want to add to the Model Advisor as instances of the
ModelAdvisor.Check class.

This example shows how to register custom checks:

7 Create Model Advisor Checks

7-42

function sl_customization(cm)

% register custom checks
cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

Note If you add custom tasks and folders within the sl_customization.m file, include
methods for registering the tasks and folders in the sl_customization function.

See Also
ModelAdvisor.Check

Related Examples
• Registering Tasks and Folders on page 8-13

More About
• “Define Custom Checks” on page 7-47

 See Also

7-43

Define Startup and Post-Execution Actions Using
Process Callback Functions

The process callback function is an optional function that you use to configure the Model
Advisor and process check results at run time. The process callback function specifies
actions that the software performs at different stages of Model Advisor execution:

• configure stage: The Model Advisor executes configure actions at startup, after
checks and tasks have been initialized. At this stage, you can customize how the Model
Advisor constructs lists of checks and tasks by modifying Visible, Enable, and
Value properties. For example, you can remove, rename, and selectively display
checks and tasks in the By Task folder.

• process_results stage: The Model Advisor executes process_results actions
after checks complete execution. You can specify actions to examine and report on the
results returned by check callback functions.

Process Callback Function Arguments
The process callback function uses the following arguments.

Argument I/O Type Data Type Description
stage Input Enumeration Specifies the stages at which

process callback actions are
executed. Use this argument in
a switch statement to specify
actions for the stages
configure and
process_results.

system Input Path Model or subsystem that the
Model Advisor analyzes.

checkCellArray Input/Output Cell array As input, the array of checks
constructed in the check
definition function.

As output, the array of checks
modified by actions in the
configure stage.

7 Create Model Advisor Checks

7-44

Argument I/O Type Data Type Description
taskCellArray Input/Output Cell array As input, the array of tasks

constructed in the task
definition function.

As output, the array of tasks
modified by actions in the
configure stage.

Process Callback Function
This example shows a process callback function that specifies actions in the configure
stage that makes only custom checks visible. In the process_results stage, this
function displays information at the command prompt for checks that do not pass.
% Process Callback Function
% Defines actions to execute at startup and post-execution
function [checkCellArray taskCellArray] = ...
 ModelAdvisorProcessFunction(stage, system, checkCellArray, taskCellArray)
switch stage
 % Specify the appearance of the Model Advisor window at startup
 case 'configure'
 for i=1:length(checkCellArray)
 % Hide all checks that do not belong to custom folder
 if isempty(strfind(checkCellArray{i}.ID, 'mathworks.example'))
 checkCellArray{i}.Visible = false;
 checkCellArray{i}.Value = false;
 end
 end
 % Specify actions to perform after the Model Advisor completes execution
 case 'process_results'
 for i=1:length(checkCellArray)
 % Print message if check does not pass
 if checkCellArray{i}.Selected && (strcmp(checkCellArray{i}.Title, ...
 'Check Simulink window screen color'))
 mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);
 % Verify whether the check was run and if it failed
 if mdladvObj.verifyCheckRan(checkCellArray{i}.ID)
 if ~mdladvObj.getCheckResultStatus(checkCellArray{i}.ID)
 % Display text in MATLAB Command Window
 disp(['Example message from Model Advisor Process'...
 ' callback.']);
 end
 end
 end
 end
end

 Define Startup and Post-Execution Actions Using Process Callback Functions

7-45

Tips for Using the Process Callback Function in a
sl_customization File
Observe the following tips when using process callback function in a sl_customization
file:

• If you delete a check in the Model Advisor Configuration Editor, you can retrieve a
copy of it from the Model Advisor Check Browser. However, if you use a process
callback function in a sl_customization file to hide checks and folders, the Model
Advisor Configuration Editor and Model Advisor Check Browser do not display the
hidden checks and folders. For a complete list of checks and folders, remove process
callback functions and update the Simulink environment.

• The Model Advisor registers only one process callback function. If you have more than
one sl_customization.m file on your MATLAB path, the Model Advisor registers
the process callback function from the sl_customization.m file that has the highest
priority.

• If you add process callbacks within the sl_customization.m file, include methods
for registering the process callbacks in the sl_customization function.

See Also
“Create Model Advisor Checks Workflow” on page 7-2 | “Register Checks” on page 7-42 |
“Organize Customization File Checks and Folders” on page 8-12 | “Organize Checks and
Folders Using the Model Advisor Configuration Editor” on page 8-5

7 Create Model Advisor Checks

7-46

Define Custom Checks

About Custom Checks
You can create a custom check to use in the Model Advisor. Creating custom checks
provides you with the ability to specify which conditions and configuration settings the
Model Advisor reviews.

You define custom checks in one or more functions that specify the properties of each
instance of the ModelAdvisor.Check class. Define one instance of this class for each
custom check that you want to add to the Model Advisor, and register the custom check.

Tip You can add a check to multiple folders by creating a task.

Contents of Check Definitions
When you define a Model Advisor check, it contains the information listed in the following
table.

Contents Description
Check ID (required) Uniquely identifies the check. The Model Advisor uses

this id to access the check.
Handle to check callback
function (required)

Function that specifies the contents of a check.

Check name (recommended) Creates a name for the check that the Model Advisor
displays.

Model compiling (optional) Specifies whether the model is compiled for check
analysis.

Check properties (optional) Creates a user interface with the check. When adding
checks as tasks, the Model Advisor uses the task
properties instead of the check properties, except for
Visible and LicenseName.

Input Parameters (optional) Adds input parameters that request input from the user.
The Model Advisor uses the input to perform the check.

Action (optional) Adds fixing action.

 Define Custom Checks

7-47

Contents Description
Explore Result button
(optional)

Adds the Explore Result button that the user clicks to
open the Model Advisor Result Explorer.

Display and Enable Checks
You can create a check and specify how it appears in the Model Advisor. You can define
when to display a check, or whether a user can select or clear a check using the
Visible, Enable, and Value properties of the ModelAdvisor.Check class.

Note When adding checks to the Model Advisor as tasks, specify these properties in the
ModelAdvisor.Task class. If you specify the properties in both ModelAdvisor.Check
and ModelAdvisor.Task, the ModelAdvisor.Task properties take precedence, except
for the Visible and LicenseName properties.

The following chart illustrates how the Visible, Enable, and Value properties interact.

7 Create Model Advisor Checks

7-48

Visible?

Do not
display
check
or task

Ignore
Enable

 and Value
properties

false

true

Enabled?
false

true

Display
check
or task

with active
check box

Display
check box
at current
Value, but
grayed out

Display
check
or task

Define Where Custom Checks Appear
Specify where the Model Advisor places custom checks using the following guidelines:

• To place a check in a new folder in the Model Advisor root, use the
ModelAdvisor.Group class.

• To place a check in a new folder in the By Task folder, use the
ModelAdvisor.FactoryGroup class.

• To place a check in the By Product folder, use the ModelAdvisor.Root.publish
method.

 Define Custom Checks

7-49

Note If the By Product folder is not displayed in the Model Advisor window, select
Show By Product Folder from the Settings > Preferences dialog box.

Check Definition Function
This example shows a function that defines the custom checks associated with the
callback functions described in “Create Callback Functions and Results” on page 7-56
and the model compile options described in “Define the Compile Option for Custom
Checks” on page 7-72. The Model Advisor compiles and simulates the model; the check
definition function returns a cell array of custom checks to be added to the Model Advisor.

The check definitions in the example use the tasks described in Defining Custom Groups
on page 8-14.
% Defines custom Model Advisor checks
function defineModelAdvisorChecks

% Sample Check 0: Check whose Results are Viewed as Detailed Result Collections
rec = ModelAdvisor.Check('com.mathworks.sample.Check0');
rec.Title = 'Check whether block names appear below blocks (recommended check style)';
rec.TitleTips = 'Example new style callback (recommended check style)';
rec.setCallbackFcn(@SampleNewCheckStyleCallback,'None','DetailStyle');
% set fix operation
myAction0 = ModelAdvisor.Action;
myAction0.setCallbackFcn(@sampleActionCB0);
myAction0.Name='Make block names appear below blocks';
myAction0.Description='Click the button to place block names below blocks';
rec.setAction(myAction0);
mdladvRoot.register(rec);

% Sample check 1: Informational check
rec = ModelAdvisor.Check('mathworks.example.configManagement');
rec.Title = 'Informational check for model configuration management';
setCallbackFcn(rec, @modelVersionChecksumCallbackUsingFT,'None','StyleOne');
rec.CallbackContext = 'PostCompile';
mdladvRoot = ModelAdvisor.Root;
mdladvRoot.register(rec);

% Sample check 2: Basic Check with Pass/Fail Status
rec = ModelAdvisor.Check('mathworks.example.unconnectedObjects');
rec.Title = 'Check for unconnected objects';
setCallbackFcn(rec, @unconnectedObjectsCallbackUsingFT,'None','StyleOne');
mdladvRoot = ModelAdvisor.Root;
mdladvRoot.register(rec);

% Sample Check 3: Check with Subchecks and Actions
rec = ModelAdvisor.Check('mathworks.example.optimizationSettings');
rec.Title = 'Check safety-related optimization settings';
setCallbackFcn(rec, @OptmizationSettingCallback,'None','StyleOne');
% Define an automatic fix action for this check

7 Create Model Advisor Checks

7-50

modifyAction = ModelAdvisor.Action;
setCallbackFcn(modifyAction, @modifyOptmizationSetting);
modifyAction.Name = 'Modify Settings';
modifyAction.Description = ['Modify model configuration optimization' ...
 ' settings that can impact safety.'];
modifyAction.Enable = true;
setAction(rec, modifyAction);
mdladvRoot = ModelAdvisor.Root;
mdladvRoot.register(rec);

Define Check Input Parameters
With input parameters, you can request input before running the check. Define input
parameters using the ModelAdvisor.InputParameter class inside a custom check
function. You must define one instance of this class for each input parameter that you
want to add to a Model Advisor check.

Specify the layout of input parameters with the following methods.

Method Description
ModelAdvisor.Check.‐
setInputParametersLayoutGrid

Specifies the size of the input parameter
grid.

ModelAdvisor.InputParameter.‐
setRowSpan

Specifies the number of rows the parameter
occupies in the Input Parameter layout grid.

ModelAdvisor.InputParameter.‐
setColSpan

Specifies the number of columns the
parameter occupies in the Input Parameter
layout grid.

This example shows how to define input parameters that you add to a custom check. You
must include input parameter definitions inside a custom check definition. The following
code, when included in a custom check definition, creates three input parameters.

rec = ModelAdvisor.Check('com.mathworks.sample.Check1');
rec.setInputParametersLayoutGrid([3 2]);
% define input parameters
inputParam1 = ModelAdvisor.InputParameter;
inputParam1.Name = 'Skip font checks.';
inputParam1.Type = 'Bool';
inputParam1.Value = false;
inputParam1.Description = 'sample tooltip';
inputParam1.setRowSpan([1 1]);
inputParam1.setColSpan([1 1]);
inputParam2 = ModelAdvisor.InputParameter;

 Define Custom Checks

7-51

inputParam2.Name = 'Standard font size';
inputParam2.Value='12';
inputParam2.Type='String';
inputParam2.Description='sample tooltip';
inputParam2.setRowSpan([2 2]);
inputParam2.setColSpan([1 1]);
inputParam3 = ModelAdvisor.InputParameter;
inputParam3.Name='Valid font';
inputParam3.Type='Combobox';
inputParam3.Description='sample tooltip';
inputParam3.Entries={'Arial', 'Arial Black'};
inputParam3.setRowSpan([2 2]);
inputParam3.setColSpan([2 2]);
rec.setInputParameters({inputParam1,inputParam2,inputParam3});

The Model Advisor displays these input parameters in the Input Parameters box.

Define Model Advisor Result Explorer Views
A list view provides a way for users to fix check warnings and failures using the Model
Advisor Result Explorer. Creating a list view allows you to:

• Add the Explore Result button to the custom check in the Model Advisor window.

7 Create Model Advisor Checks

7-52

• Provide the information to populate the Model Advisor Result Explorer.

This example shows how to define list views. You must make the Explore Result button
visible using the ModelAdvisor.Check.ListViewVisible property inside a custom
check function, and include list view definitions inside a check callback function. You
must define one instance of this class for each list view that you want to add to a Model
Advisor Result Explorer window.

The following code, when included in a check definition function, adds the Explore
Result button to the check in the Model Advisor.
rec = ModelAdvisor.Check('com.mathworks.sample.Check1');
% add 'Explore Result' button
rec.ListViewVisible = true;

The following code, when included in a check callback function, provides the information
to populate the Model Advisor Result Explorer.
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);
mdladvObj.setCheckResultStatus(true);

% define list view parameters
myLVParam = ModelAdvisor.ListViewParameter;
myLVParam.Name = 'Invalid font blocks'; % the name appeared at pull down filter
myLVParam.Data = get_param(searchResult,'object')';
myLVParam.Attributes = {'FontName'}; % name is default property
mdladvObj.setListViewParameters({myLVParam});

Define Check Actions
An action provides a way for you to specify an action that the Model Advisor performs to
fix a Model Advisor check. When you define an action, the Model Advisor window includes
an Action box below the Analysis box.

You define actions using the ModelAdvisor.Action class inside a custom check
function. You must define:

• One instance of this class for each action that you want to take.
• One action callback function for each action.

This example shows the information you need to populate the Action box in the Model
Advisor. Include this in the check definition function.
rec = ModelAdvisor.Check('mathworks.example.optimizationSettings');
% Define an automatic fix action for this check
modifyAction = ModelAdvisor.Action;

 Define Custom Checks

7-53

modifyAction.setCallbackFcn(@modifyOptmizationSetting);
modifyAction.Name = 'Modify Settings';
modifyAction.Description = ['Modify model configuration optimization' ...
 ' settings that can impact safety'];
modifyAction.Enable = true;
rec.setAction(modifyAction);

The Model Advisor, in the right pane, displays an Action box.

See Also
ModelAdvisor.Action | ModelAdvisor.Check | ModelAdvisor.FactoryGroup |
ModelAdvisor.Group | ModelAdvisor.InputParameter | ModelAdvisor.Task |
publish

Related Examples
• “Organize Customization File Checks and Folders” on page 8-12

More About
• “Batch-Fix Warnings or Failures” (Simulink)
• “Create Callback Functions and Results” on page 7-56

7 Create Model Advisor Checks

7-54

• “Define the Compile Option for Custom Checks” on page 7-72
• Defining Custom Groups on page 8-14
• “Register Checks” on page 7-42

 See Also

7-55

Create Callback Functions and Results

About Callback Functions
A callback function specifies the actions that the Model Advisor performs on a model or
subsystem, based on the check or action that the user runs. You must create a callback
function for each custom check and action so that the Model Advisor can execute the
function when you run the check. All types of callback functions provide one or more
return arguments for displaying the results after executing the check or action. In some
cases, return arguments are character vectors or cell arrays of character vectors that
support embedded HTML tags for text formatting.

Action More Information
Create an informational callback function
for a custom check that finds and displays
the model configuration and checksum
information.

“Informational Check Callback Function”
on page 7-57

Create a simple callback function that
indicates if the model passed a check, or to
recommend fixing the issue.

“Simple Check Callback Function” on page
7-58

Create detailed check callback function to
return and organize results as strings in a
layered, hierarchical fashion.

“Detailed Check Callback Function” on
page 7-59

Create a callback function that
automatically displays hyperlinks for every
object returned by the check.

“Check Callback Function with Hyperlinked
Results” on page 7-60

Create a callback function that collects
results into a group, such as blocks in a
subsystem that violate a check. These
results are presented on the Model Advisor
user interface by using report styles that
are viewed by recommended action,
subsystem, or block.

“Check Callback Function for Detailed
Result Collections” on page 7-63

7 Create Model Advisor Checks

7-56

Action More Information
Create an action callback function that
specifies the actions that the Model Advisor
performs on a model or subsystem when
you click the action button.

“Action Callback Function” on page 7-65

Create a callback function for a custom
check with two subchecks.

“Check With Subchecks and Actions” on
page 7-66

Create a callback function for a custom
basic check with pass/fail status.

“Basic Check with Pass/Fail Status” on page
7-68

Informational Check Callback Function
This example shows how to create a callback function for a custom informational check
that finds and displays the model configuration and checksum information. The
informational check uses the Result Template API to format the check result.

An informational check includes the following items in the results:

• A description of what the check is reviewing.
• References to standards, if applicable.

An informational check does not include the following items in the results:

• The check status. The Model Advisor displays the overall check status, but the status
is not in the result.

• A description of the status.
• The recommended action to take when the check does not pass.
• Subcheck results.
• A line below the results.

% Sample Check 1 Callback Function: Informational Check
% Find and display model configuration and checksum information
% Informational checks do not have a passed or warning status in the results

function resultDescription = modelVersionChecksumCallbackUsingFT(system)
resultDescription = [];
system = getfullname(system);
model = bdroot(system);

% Format results in a list using Model Advisor Result Template API
ft = ModelAdvisor.FormatTemplate('ListTemplate');

 Create Callback Functions and Results

7-57

% Add See Also section for references to standards
docLinkSfunction{1} = {['IEC 61508-3, Table A.8 (5)' ...
 ' ''Software configuration management'' ']};
setRefLink(ft,docLinkSfunction);

% Description of check in results
desc = 'Display model configuration and checksum information.';
% If running the Model Advisor on a subsystem, add note to description
if strcmp(system, model) == false
 desc = strcat(desc, ['
NOTE: The Model Advisor is reviewing a' ...
 ' sub-system, but these results are based on root-level settings.']);
end
setCheckText(ft, desc);

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);
% If err, use these values
mdlver = 'Error - could not retrieve Version';
mdlauthor = 'Error - could not retrieve Author';
mdldate = 'Error - could not retrieve Date';
mdlsum = 'Error - could not retrieve CheckSum';

% Get model configuration and checksum information
try
 mdlver = get_param(model,'ModelVersion');
 mdlauthor = get_param(model,'LastModifiedBy');
 mdldate = get_param(model,'LastModifiedDate');
 mdlsum = Simulink.BlockDiagram.getChecksum(model);
 mdlsum = [num2str(mdlsum(1)) ' ' num2str(mdlsum(2)) ' ' ...
 num2str(mdlsum(3)) ' ' num2str(mdlsum(4))];
 mdladvObj.setCheckResultStatus(true); % init to true
catch err
 mdladvObj.setCheckResultStatus(false);
 setSubResultStatusText(ft,err.message);
 resultDescription{end+1} = ft;
 return
end

% Display the results
lbStr ='
';
resultStr = ['Model Version: ' mdlver lbStr 'Author: ' mdlauthor lbStr ...
 'Date: ' mdldate lbStr 'Model Checksum: ' mdlsum];
setSubResultStatusText(ft,resultStr);

% Informational checks do not have subresults, suppress line
setSubBar(ft,false);
resultDescription{end+1} = ft;

Simple Check Callback Function
This example shows how to create a simple check callback function. Use a simple check
callback function with results formatted using the Result Template API to indicate
whether the model passed or failed the check, or to recommend fixing an issue. The

7 Create Model Advisor Checks

7-58

keyword for this callback function is StyleOne. The check definition requires this
keyword.

The check callback function takes the following arguments.

Argument I/O Type Description
system Input Path to the model or subsystem analyzed by the Model

Advisor.
result Output MATLAB character vector that supports Model Advisor

Formatting API on page 7-86 calls or embedded HTML
tags for text formatting.

Detailed Check Callback Function
This example shows how to create a detailed check callback function. Use the detailed
check callback function to return and organize results as strings in a layered, hierarchical
fashion. The function provides two output arguments so you can associate text
descriptions with one or more paragraphs of detailed information. The keyword for the
detailed callback function is StyleTwo. The check definition requires this keyword.

The detailed callback function takes the following arguments.

Argument I/O Type Description
system Input Path to the model or system analyzed by

the Model Advisor.
ResultDescription Output Cell array of MATLAB character vectors

that supports Model Advisor Formatting
API on page 7-86 calls or embedded
HTML tags for text formatting. The Model
Advisor concatenates the
ResultDescription character vector
with the corresponding array of
ResultDetails character vectors.

ResultDetails Output Cell array of cell arrays, each of which
contains one or more character vectors.

Note The ResultDetails cell array must be the same length as the
ResultDescription cell array.

 Create Callback Functions and Results

7-59

This example shows a detailed check callback function that checks optimization settings
for simulation and code generation.
% -----------------------------
% Sample StyleTwo callback function, used for check "Check model optimization settings"
% Please refer to Model Advisor API document for more details.
% -----------------------------
function [ResultDescription, ResultDetails] = SampleStyleTwoCallback(system)
ResultDescription ={};
ResultDetails ={};

model = bdroot(system);
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system); % get object
mdladvObj.setCheckResultStatus(true); % init result status to pass

% Check Simulation optimization setting
ResultDescription{end+1} = ModelAdvisor.Paragraph(['Check Simulation '...
 'optimization settings:']);
if strcmp(get_param(model,'BlockReduction'),'off');
 ResultDetails{end+1} = {ModelAdvisor.Text(['It is recommended to '...
 'turn on Block reduction optimization option.',{'italic'}])};
 mdladvObj.setCheckResultStatus(false); % set to fail
 mdladvObj.setActionEnable(true);
else
 ResultDetails{end+1} = {ModelAdvisor.Text('Passed',{'pass'})};
end

% Check code generation optimization setting
ResultDescription{end+1} = ModelAdvisor.Paragraph(['Check code generation '...
 'optimization settings:']);
ResultDetails{end+1} = {};
if strcmp(get_param(model,'LocalBlockOutputs'),'off');
 ResultDetails{end}{end+1} = ModelAdvisor.Text(['It is recommended to'...
 ' turn on Enable local block outputs option.',{'italic'}]);
 ResultDetails{end}{end+1} = ModelAdvisor.LineBreak;
 mdladvObj.setCheckResultStatus(false); % set to fail
 mdladvObj.setActionEnable(true);
end
if strcmp(get_param(model,'BufferReuse'),'off');
 ResultDetails{end}{end+1} = ModelAdvisor.Text(['It is recommended to'...
 ' turn on Reuse block outputs option.',{'italic'}]);
 mdladvObj.setCheckResultStatus(false); % set to fail
 mdladvObj.setActionEnable(true);
end
if isempty(ResultDetails{end})
 ResultDetails{end}{end+1} = ModelAdvisor.Text('Passed',{'pass'});
end

Check Callback Function with Hyperlinked Results
This example shows how to create a callback function with hyperlinked results. This
callback function automatically displays hyperlinks for every object returned by the check

7 Create Model Advisor Checks

7-60

so that you can easily locate problem areas in your model or subsystem. The keyword for
this type of callback function is StyleThree. The check definition requires this keyword.

This callback function takes the following arguments.

Argument I/O Type Description
system Input Path to the model or system analyzed by

the Model Advisor.
ResultDescription Output Cell array of MATLAB character vectors

that supports the Model Advisor
Formatting API calls or embedded HTML
tags for text formatting.

ResultDetails Output Cell array of cell arrays, each of which
contains one or more Simulink objects
such as blocks, ports, lines, and Stateflow
charts. The objects must be in the form of
a handle or Simulink path.

Note The ResultDetails cell array must be the same length as the
ResultDescription cell array.

The Model Advisor automatically concatenates each character vector from
ResultDescription with the corresponding array of objects from ResultDetails.
The Model Advisor displays the contents of ResultDetails as a set of hyperlinks, one
for each object returned in the cell arrays. When you click a hyperlink, the Model Advisor
displays the target object highlighted in your Simulink model.

This example shows a check callback function with hyperlinked results. This example
checks a model for consistent use of font type and font size in its blocks. It also contains
input parameters, actions, and a call to the Model Advisor Result Explorer, which are
described in later sections.

% Sample StyleThree callback function, used for check "Check Simulink block font".
% Please refer to Model Advisor API document for more details.
% -----------------------------
function [ResultDescription, ResultDetails] = SampleStyleThreeCallback(system)
ResultDescription ={};
ResultDetails ={};

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);

 Create Callback Functions and Results

7-61

mdladvObj.setCheckResultStatus(true);
needEnableAction = false;
% get input parameters
inputParams = mdladvObj.getInputParameters;
skipFontCheck = inputParams{1}.Value;
regularFontSize = inputParams{2}.Value;
regularFontName = inputParams{3}.Value;
if skipFontCheck
 ResultDescription{end+1} = ModelAdvisor.Paragraph('Skipped.');
 ResultDetails{end+1} = {};
 return
end
regularFontSize = str2double(regularFontSize);
if regularFontSize<1 || regularFontSize>=99
 mdladvObj.setCheckResultStatus(false);
 ResultDescription{end+1} = ModelAdvisor.Paragraph(['Invalid font size. '...
 'Please enter a value between 1 and 99']);
 ResultDetails{end+1} = {};
end

% find all blocks inside current system
allBlks = find_system(system);

% block diagram doesn't have font property
% get blocks inside current system that have font property
allBlks = setdiff(allBlks, {system});

% find regular font name blocks
regularBlks = find_system(allBlks,'FontName',regularFontName);

% look for different font blocks in the system
searchResult = setdiff(allBlks, regularBlks);
if ~isempty(searchResult)
 ResultDescription{end+1} = ModelAdvisor.Paragraph(['It is recommended to '...
 'use same font for blocks to ensure uniform appearance of model. '...
 'The following blocks use a font other than ' regularFontName ': ']);
 ResultDetails{end+1} = searchResult;
 mdladvObj.setCheckResultStatus(false);
 myLVParam = ModelAdvisor.ListViewParameter;
 myLVParam.Name = 'Invalid font blocks'; % pull down filter name
 myLVParam.Data = get_param(searchResult,'object')';
 myLVParam.Attributes = {'FontName'}; % name is default property
 mdladvObj.setListViewParameters({myLVParam});
 needEnableAction = true;
else
 ResultDescription{end+1} = ModelAdvisor.Paragraph(['All block font names '...
 'are identical.']);
 ResultDetails{end+1} = {};
end

% find regular font size blocks
regularBlks = find_system(allBlks,'FontSize',regularFontSize);
% look for different font size blocks in the system
searchResult = setdiff(allBlks, regularBlks);
if ~isempty(searchResult)

7 Create Model Advisor Checks

7-62

 ResultDescription{end+1} = ModelAdvisor.Paragraph(['It is recommended to '...
 'use same font size for blocks to ensure uniform appearance of model. '...
 'The following blocks use a font size other than ' num2str(regularFontSize) ': ']);
 ResultDetails{end+1} = searchResult;
 mdladvObj.setCheckResultStatus(false);
 myLVParam = ModelAdvisor.ListViewParameter;
 myLVParam.Name = 'Invalid font size blocks'; % pull down filter name
 myLVParam.Data = get_param(searchResult,'object')';
 myLVParam.Attributes = {'FontSize'}; % name is default property
 mdladvObj.setListViewParameters...
 ({mdladvObj.getListViewParameters{:}, myLVParam});
 needEnableAction = true;
else
 ResultDescription{end+1} = ModelAdvisor.Paragraph(['All block font sizes '...
 'are identical.']);
 ResultDetails{end+1} = {};
end

mdladvObj.setActionEnable(needEnableAction);
mdladvObj.setCheckErrorSeverity(1);

In the Model Advisor, if you run Example task with input parameter and auto-fix
ability for the slvnvdemo_mdladv model, you can view the hyperlinked results. Clicking
the first hyperlink, slvnvdemo_mdladv/Input, displays the Simulink model with the
Input block highlighted.

Check Callback Function for Detailed Result Collections
This example shows a check callback function that creates result detail objects that are
collected into a group, such as blocks in a subsystem that violate a check. When a check
is not violated, the result details contain the check description and result status. When a
check is violated, the result details contain the check description, result status, and the
recommended action to fix the issue.

The keyword for this callback function is DetailStyle. The check definition requires
this keyword. See “Check Definition Function” on page 7-50.

The callback function takes the arguments listed in the table.

Argument I/O Type Description
system Input Path to the model or system analyzed by

the Model Advisor.
CheckObj Input ModelAdvisor.Check object for the

check.

 Create Callback Functions and Results

7-63

In this example, the callback function reviews the model and identifies blocks whose
name is not located below the block. It uses name and value pairs to gather the results
into collections.
% -----------------------------
% Sample new check style callback function, used for check "Check whether block names appear below blocks".
% Please refer to Model Advisor API document for more details.
% -----------------------------
function SampleNewCheckStyleCallback(system, CheckObj)
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system); % get object

% find all blocks whose name does not appear below blocks
violationBlks = find_system(system, 'Type','block',...
 'NamePlacement','alternate',...
 'ShowName', 'on');
if isempty(violationBlks)
 ElementResults = ModelAdvisor.ResultDetail;
 ElementResults.IsInformer = true;
 ElementResults.Description = 'Identify blocks where the name is not displayed below the block.';
 ElementResults.Status = 'All blocks have names displayed below the block.';
 mdladvObj.setCheckResultStatus(true);
else
 ElementResults(1,numel(violationBlks))=ModelAdvisor.ResultDetail;
 for i=1:numel(ElementResults)
 ElementResults(i).setData(violationBlks{i});
 ElementResults(i).Description = 'Identify blocks where the name is not displayed below the block.';
 ElementResults(i).Status = 'The following blocks have names that do not display below the blocks:';
 ElementResults(i).RecAction = 'Change the location such that the block name is below the block.';
 end
 mdladvObj.setCheckResultStatus(false);
 mdladvObj.setActionEnable(true);
end

CheckObj.setResultDetails(ElementResults);

In the Model Advisor, if you run Check whether block names appear below blocks
(recommended check style) for the slvnvdemo_mdladv model, you can view the
results by selecting:

• View By > Recommended Action ─ When a check is violated, this view shows a list
of model elements that violate the check. When there is no violation, this view
provides a brief description stating that the check was not violated.

• View By > Subsystem ─ This view shows a table of model elements that violate the
check, organized by model or subsystem (when applicable)

• View By > Block ─ This view provides a list of check violations for each block

When there are check violations, click the hyperlink to easily review the issues in your
model or subsystem. To create a check using this callback function, see “Create
Customized Pass/Fail Check with Detailed Result Collections” on page 7-14.

7 Create Model Advisor Checks

7-64

Action Callback Function
This example shows how to create an action callback function. An action callback function
specifies the actions that the Model Advisor performs on a model or subsystem when the
user clicks the action button. You must create one callback function for the action that
you want to take.

The action callback function takes the following arguments.

Argument I/O Type Description
taskobj Input The ModelAdvisor.Task object for the check that

includes an action definition.
result Output MATLAB character vector that supports Model Advisor

Formatting API on page 7-86 calls or embedded HTML
tags for text formatting.

This example shows an action callback function that fixes the optimization settings that
the Model Advisor reviews as defined in “Check With Subchecks and Actions” on page 7-
66.
% Sample Check 3 Action Callback Function: Check with Subresults and Actions
% Fix optimization settings
function result = modifyOptmizationSetting(taskobj)
% Initialize variables
result = ModelAdvisor.Paragraph();
mdladvObj = taskobj.MAObj;
system = bdroot(mdladvObj.System);

% 'Block reduction' is selected
% Clear the check box and display text describing the change
if ~strcmp(get_param(system,'BlockReduction'),'off')
 set_param(system,'BlockReduction','off');
 result.addItem(ModelAdvisor.Text(...
 'Cleared the ''Block reduction'' check box.',{'Pass'}));
 result.addItem(ModelAdvisor.LineBreak);
end
% 'Conditional input branch execution' is selected
% Clear the check box and display text describing the change
if ~strcmp(get_param(system,'ConditionallyExecuteInputs'),'off')
 set_param(system,'ConditionallyExecuteInputs','off');
 result.addItem(ModelAdvisor.Text(...
 'Cleared the ''Conditional input branch execution'' check box.', ...
 {'Pass'}));
end

 Create Callback Functions and Results

7-65

Action Callback Function for Detailed Result Collections

This example shows the action callback function for check results that are collected into a
group, such as blocks in a subsystem that violate a check. From the Model Advisor, you
can use this functionality to fix issues flagged by the check.
% -----------------------------
% Sample Check 0 Action Callback Function: Check whose Results are Viewed as Detailed Result Collections
% please refer to Model Advisor API document for more details.
% -----------------------------
function result = sampleActionCB0(taskobj)
mdladvObj = taskobj.MAObj;
checkObj = taskobj.Check;
resultDetailObjs = checkObj.ResultDetails;
for i=1:numel(resultDetailObjs)
 % take some action for each of them
 block=Simulink.ID.getHandle(resultDetailObjs(i).Data);
 set_param(block,'NamePlacement','normal');
end

result = ModelAdvisor.Text('Changed the location such that the block name is below the block.');
mdladvObj.setActionEnable(false);

In the Model Advisor, open the slvnvdemo_mdladv model. Right-click on a block and
select Rotate & Flip > Flip Block Name. When you run Check whether block names
appear below blocks (recommended check style), the check fails.

You can fix the failed blocks by using one of these methods:

• Update each violation individually by double-clicking the hyperlink to open the block.
Right-click the block and select Rotate & Flip > Flip Block Name.

• Select the Make block names appear below blocks button. The Model Advisor
automatically fixes the issues in the model. Notice that the button is now greyed out.

To create a check using this action callback function, see “Create Customized Pass/Fail
Check with Detailed Result Collections” on page 7-14.

Check With Subchecks and Actions
This example shows how to create a callback function for a custom check that finds and
reports optimization settings. The check consists of two subchecks. The first reviews the
Block reduction optimization setting and the second reviews the Conditional input
branch execution optimization setting.

A check with subchecks includes the following items in the results:

7 Create Model Advisor Checks

7-66

• A description of what the overall check is reviewing.
• A title for the subcheck.
• A description of what the subcheck is reviewing.
• References to standards, if applicable.
• The status of the subcheck.
• A description of the status.
• Results for the subcheck.
• Recommended actions to take when the subcheck does not pass.
• A line between the subcheck results.
% Sample Check 3 Callback Function: Check with Subchecks and Actions
% Find and report optimization settings
function ResultDescription = OptmizationSettingCallback(system)
% Initialize variables
system =getfullname(system);
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);
mdladvObj.setCheckResultStatus(false); % Default check status is 'Warning'
ResultDescription = {};
system = bdroot(system);

% Format results in a list using Model Advisor Result Template API
% Create a list template object for first subcheck
ft1 = ModelAdvisor.FormatTemplate('ListTemplate');

% Description of check in results
setCheckText(ft1,['Check model configuration for optimization settings that'...
 'can impact safety.']);

% Title and description of first subcheck
setSubTitle(ft1,'Verify Block reduction setting');
setInformation(ft1,'Check whether the ''Block reduction'' check box is cleared.');
% Add See Also section with references to applicable standards
docLinks{1} = {['Reference DO-178B Section 6.3.4e - Source code ' ...
 'is traceable to low-level requirements']};
% Review 'Block reduction' optimization
setRefLink(ft1,docLinks);
if strcmp(get_param(system,'BlockReduction'),'off')
 % 'Block reduction' is cleared
 % Set subresult status to 'Pass' and display text describing the status
 setSubResultStatus(ft1,'Pass');
 setSubResultStatusText(ft1,'The ''Block reduction'' check box is cleared.');
 ResultStatus = true;
else
 % 'Block reduction' is selected
 % Set subresult status to 'Warning' and display text describing the status
 setSubResultStatus(ft1,'Warn');
 setSubResultStatusText(ft1,'The ''Block reduction'' check box is selected.');
 setRecAction(ft1,['Clear the ''Optimization > Block reduction''' ...
 ' check box in the Configuration Parameters dialog box.']);

 Create Callback Functions and Results

7-67

 ResultStatus = false;
end

ResultDescription{end+1} = ft1;

% Title and description of second subcheck
ft2 = ModelAdvisor.FormatTemplate('ListTemplate');
setSubTitle(ft2,'Verify Conditional input branch execution setting');
setInformation(ft2,['Check whether the ''Conditional input branch execution'''...
 ' check box is cleared.'])
% Add See Also section and references to applicable standards
docLinks{1} = {['Reference DO-178B Section 6.4.4.2 - Test coverage ' ...
 'of software structure is achieved']};
setRefLink(ft2,docLinks);

% Last subcheck, suppress line
setSubBar(ft2,false);

% Check status of the 'Conditional input branch execution' check box
if strcmp(get_param(system,'ConditionallyExecuteInputs'),'off')
 % The 'Conditional input branch execution' check box is cleared
 % Set subresult status to 'Pass' and display text describing the status
 setSubResultStatus(ft2,'Pass');
 setSubResultStatusText(ft2,['The ''Conditional input branch execution''' ...
 'check box is cleared.']);
else
 % 'Conditional input branch execution' is selected
 % Set subresult status to 'Warning' and display text describing the status
 setSubResultStatus(ft2,'Warn');
 setSubResultStatusText(ft2,['The ''Conditional input branch execution'''...
 ' check box is selected.']);
 setRecAction(ft2,['Clear the ''Optimization > Conditional input branch ' ...
 'execution'' check box in the Configuration Parameters dialog box.']);
 ResultStatus = false;
end

ResultDescription{end+1} = ft2; % Pass list template object to Model Advisor
mdladvObj.setCheckResultStatus(ResultStatus); % Set overall check status
% Enable Modify Settings button when check fails
mdladvObj.setActionEnable(~ResultStatus);

Basic Check with Pass/Fail Status
This example shows a callback function for a custom basic check that finds and reports
unconnected lines, input ports, and output ports.

A basic check includes the following items in the results:

• A description of what the check is reviewing.
• References to standards, if applicable.

7 Create Model Advisor Checks

7-68

• The status of the check.
• A description of the status.
• Results for the check.
• The recommended actions to take when the check does not pass.

A basic check does not include the following items in the results:

• Subcheck results.
• A line below the results.

% Sample Check 2 Callback Function: Basic Check with Pass/Fail Status
% Find and report unconnected lines, input ports, and output ports
function ResultDescription = unconnectedObjectsCallbackUsingFT(system)
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);
% Initialize variables
mdladvObj.setCheckResultStatus(false);
ResultDescription ={};
ResultStatus = false; % Default check status is 'Warning'
system = getfullname(system);
isSubsystem = ~strcmp(bdroot(system), system);

% Format results in a list using Model Advisor Result Template API
% Create a list template object
ft = ModelAdvisor.FormatTemplate('ListTemplate');

% Description of check in results
if isSubsystem
 checkDescStr = ['Identify unconnected lines, input ports, and ' ...
 'output ports in the subsystem.'];
else
 checkDescStr = ['Identify unconnected lines, input ports, and ' ...
 'output ports in the model.'];
end
setCheckText(ft,checkDescStr);

% Add See Also section with references to applicable standards
checkStdRef = 'IEC 61508-3, Table A.3 (3) ''Language subset'' ';
docLinkSfunction{1} = {checkStdRef};
setRefLink(ft,docLinkSfunction);

% Basic checks do not have subresults, suppress line
setSubBar(ft,false);

% Check for unconnected lines, inputs, and outputs
sysHandle = get_param(system, 'Handle');
uLines = find_system(sysHandle, ...
 'Findall', 'on', ...
 'LookUnderMasks', 'on', ...
 'Type', 'line', ...
 'Connected', 'off');
uPorts = find_system(sysHandle, ...

 Create Callback Functions and Results

7-69

 'Findall', 'on', ...
 'LookUnderMasks', 'on', ...
 'Type', 'port', ...
 'Line', -1);

% Use parents of port objects for the correct highlight behavior
if ~isempty(uPorts)
 for i=1:length(uPorts)
 uPorts(i) = get_param(get_param(uPorts(i), 'Parent'), 'Handle');
 end
end

% Create cell array of unconnected object handles
modelObj = {};
searchResult = union(uLines, uPorts);
for i = 1:length(searchResult)
 modelObj{i} = searchResult(i);
end

% No unconnected objects in model
% Set result status to 'Pass' and display text describing the status
if isempty(modelObj)
 setSubResultStatus(ft,'Pass');
 if isSubsystem
 setSubResultStatusText(ft,['There are no unconnected lines, ' ...
 'input ports, and output ports in this subsystem.']);
 else
 setSubResultStatusText(ft,['There are no unconnected lines, ' ...
 'input ports, and output ports in this model.']);
 end
 ResultStatus = true;
% Unconnected objects in model
% Set result status to 'Warning' and display text describing the status
else
 setSubResultStatus(ft,'Warn');
 if ~isSubsystem
 setSubResultStatusText(ft,['The following lines, input ports, ' ...
 'or output ports are not properly connected in the system: ' system]);
 else
 setSubResultStatusText(ft,['The following lines, input ports, or ' ...
 'output ports are not properly connected in the subsystem: ' system]);
 end
 % Specify recommended action to fix the warning
 setRecAction(ft,'Connect the specified blocks.');
 % Create a list of handles to problem objects
 setListObj(ft,modelObj);
 ResultStatus = false;
end
% Pass the list template object to the Model Advisor
ResultDescription{end+1} = ft;
% Set overall check status
mdladvObj.setCheckResultStatus(ResultStatus);

7 Create Model Advisor Checks

7-70

See Also
ModelAdvisor.Check | ModelAdvisor.FormatTemplate | ModelAdvisor.Task

More About
• Defining Custom Groups on page 8-14
• “Define Custom Checks” on page 7-47
• “Format Check Results” on page 7-86
• “Register Checks” on page 7-42

 See Also

7-71

Define the Compile Option for Custom Checks
Depending on the implementation of your model and what you want your custom check to
achieve, it is important that you specify the appropriate compile option so the intended
information is evaluated by your custom check.

You use the ModelAdvisor.Check.CallbackContext property to define the compile option:

• None specifies that the Model Advisor does not have to compile your model before
analysis by your custom check.

• PostCompile specifies that the Model Advisor must compile the model to update the
model diagram and then simulate the model to execute your custom check.

• PostCompileForCodegen specifies that the Model Advisor must compile and update
the model diagram specifically for code generation, but does not simulate the model.
Use this option for Model Advisor checks that analyze code generation readiness of
the model.

Checks for Models That Are Not Compiled by the Model
Advisor
For custom checks that do not require the Model Advisor to compile the model before
execution of the check, in the check definition you specify the
ModelAdvisor.Check.CallbackContext property as:

rec.CallbackContext = 'None';

In this situation, the Model Advisor simulates the model. The Model Advisor does not
compile the model.

Note By default, the Model Advisor does not compile the model for custom checks. You
do not have to include the ModelAdvisor.Check.CallbackContext property in the check
definition.

This example shows a check definition that does not require the model to be compiled.

function defineModelAdvisorChecks
mdladvRoot = ModelAdvisor.Root;
% -----------------------------
% Sample Check: Check whose model does not need to be compiled

7 Create Model Advisor Checks

7-72

% -----------------------------

rec = ModelAdvisor.Check('exampleCheck2');
rec.Title = 'Non-compile check example';
rec.TitleID = 'custom.dtcCheck.NonCompile1';
rec.TitleTips = 'A custom check for a model that does not need to be compiled ';
rec.setCallbackFcn(@CheckNoCompile,'None','StyleOne');
rec.CallbackContext = 'None'; % Not compiled

mdladvRoot.publish(rec, 'Demo');

Checks That Require the Model to be Compiled and Simulated
by the Model Advisor
For custom checks that require model compilation and simulation to properly check the
implementation of the model, in the check definition you specify the
ModelAdvisor.Check.CallbackContext property as:

rec.CallbackContext = 'PostCompile';

In this situation, the Model Advisor updates the model diagram and simulates the model.
The Model Advisor does not flag modeling issues that fail during code generation because
these issues do not affect the simulated model.

This example shows a check definition that requires a model to be compiled and
simulated.

function defineModelAdvisorChecks
mdladvRoot = ModelAdvisor.Root;
% -----------------------------
% Sample Check: Check whose model must be compiled and simulated.
% -----------------------------

rec = ModelAdvisor.Check('exampleCheck3');
rec.Title = 'PostCompile check example';
rec.TitleID = 'custom.dtcCheck.Compile1';
rec.TitleTips = 'A custom check for a model that is compiled and simulated';
rec.setCallbackFcn(@CheckCompileSimulate,'None','StyleOne');
rec.CallbackContext = 'PostCompile'; % Compiled and simulated

mdladvRoot.publish(rec, 'Demo');

 Define the Compile Option for Custom Checks

7-73

Checks That Evaluate Code Generation Readiness of the
Model
For custom checks that evaluate code generation readiness, you must develop the model
to generate code. In the check definition you specify the
ModelAdvisor.Check.CallbackContext property as:

rec.CallbackContext = 'PostCompileForCodegen';

In this situation, the Model Advisor compiles the model and updates the model diagram
specifically for code generation. The Model Advisor does not assume that the model is
being simulated.

You can create custom Model Advisor checks that identify code generation setup issues in
a model at an earlier stage, avoiding unexpected errors during code generation. For
example, in this model, the Red enumeration in BasicColors and OtherColors are OK
for use in a simulated model. In the generated code, however, these Red enumerations
result in an enumeration clash. By using the 'PostCompileForCodegen' option, your
custom Model Advisor check can identify this type of code generation setup issue.

7 Create Model Advisor Checks

7-74

The 'PostCompileForCodegen' option compiles the model for all variant choices. This
compilation enables you to analyze possible issues present in the generated code for
active and inactive variant paths in the model. An example is provided in “Create Custom
Check to Evaluate Active and Inactive Variant Paths from a Model” on page 7-76.

This example shows a check definition that requires a model to be compiled for code
generation

function defineModelAdvisorChecks
mdladvRoot = ModelAdvisor.Root;
% -----------------------------
% Sample Check: Check whose model is compiled for generated code.
% Model is not simulated.
% -----------------------------

 Define the Compile Option for Custom Checks

7-75

rec = ModelAdvisor.Check('exampleCheck1');
rec.Title = 'PostCompileForCodegen check example';
rec.TitleID = 'custom.dtcCheck.CompileForCodegen1';
rec.TitleTips = 'A custom check for evaluating the generated code';
rec.setCallbackFcn(@CheckSingleToBoolConversion,'None','StyleOne');
rec.CallbackContext = 'PostCompileForCodegen'; % Compile for generated code

mdladvRoot.publish(rec, 'Demo');

Create Custom Check to Evaluate Active and Inactive Variant
Paths from a Model
This example shows the creation of a custom Model Advisor check that evaluates active
and inactive variant paths from a variant system model. The example provides Model
Advisor results that demonstrate why you use PostCompileForCodegen versus
PostCompile as the value for the ModelAdvisor.Check.CallbackContext property
when generating code from the model is your final objective. See “Define the Compile
Option for Custom Checks” on page 7-72.

Update Model to Analyze All Variant Choices

For the Model Advisor to evaluate active and inactive paths in a variant system, you must
enable the Analyze all choices during update diagram and generate preprocessor
conditionals option for the variant blocks (Variant Sink, Variant Source, and Variant
Subsystem, Variant Model).

Note: Selecting this option can affect the execution time, thereby increasing the time it
takes for the Model Advisor to evaluate the model.

1 Open the example model ex_check_compile_code_gen.
2 For each Variant Source block, open the block parameters and select the Analyze all

choices during update diagram and generate preprocessor conditionals
option.

3 Save the model to your local working folder.

7 Create Model Advisor Checks

7-76

Update sl_customization.m File

In your working folder, update the sl_customization.m file. Save your changes. If you
are asked if it is ok to overwrite the file, click OK.

function sl_customization(cm)

% --- register custom checks
cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

end

% --- defineModelAdvisorChecks function
function defineModelAdvisorChecks
mdladvRoot = ModelAdvisor.Root;

rec = ModelAdvisor.Check('exampleCheck1');
rec.Title = 'Check to identify SINGLE to BOOL conversions';
rec.TitleID = 'custom.dtcCheck.CompileForCodegen1';

 Define the Compile Option for Custom Checks

7-77

rec.TitleTips = 'Custom check to identify SINGLE to BOOL conversions';
rec.setCallbackFcn(@CheckSingleToBoolConversion,'None','StyleOne');
rec.CallbackContext = 'PostCompileForCodegen'; % Compile for Code Generation

mdladvRoot.publish(rec, 'Demo');

end

% --- creates SimpleCallback function
function result = CheckSingleToBoolConversion(system)

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);
result={};
dtcBlks = find_system(system, 'BlockType', 'DataTypeConversion');
for ii = numel(dtcBlks):-1:1
 dtcBlk = dtcBlks{ii};
 compDataTypes = get_param(dtcBlk, 'CompiledPortDataTypes');
 if isempty(compDataTypes)
 dtcBlks(ii) = [];
 continue;
 end
 if ~(strcmp(compDataTypes.Inport, 'single') && strcmp(compDataTypes.Outport, 'boolean'))
 dtcBlks(ii) = [];
 continue;
 end
end

ft = ModelAdvisor.FormatTemplate('ListTemplate');
ft.setInformation(['This check looks for data type conversion blocks that'...
 ' convert single data to boolean data']);
if ~isempty(dtcBlks)
 ft.setSubResultStatusText(['Check has failed. The following '...
 'data type conversion blocks convert single data to boolean:']);
 ft.setListObj(dtcBlks);
 ft.setSubResultStatus('warn');
 ft.setRecAction('Modify the model to avoid converting data type from single to boolean');
 mdladvObj.setCheckResultStatus(false);
else
 ft.setSubResultStatusText(['Check has passed. No data type conversion blocks '...
 'that convert single data to boolean were found.']);
 ft.setSubResultStatus('pass');
 mdladvObj.setCheckResultStatus(true);
end
ft.setSubBar(0);

7 Create Model Advisor Checks

7-78

result{end+1} = ft;

end

function result = dummy(~)
result={};
end

Open Model Advisor and Execute Custom Check

Prior to opening the Model Advisor and running the custom check, you must refresh the
Model Advisor check information cache. In the MATLAB Command Window, enter:

Advisor.Manager.refresh_customizations

To open the Model Advisor and execute the custom check:

1 Open your saved model.
2 In the Modeling tab, select Model Advisor. A System Selector ― Model Advisor

dialog box opens. Click OK. The Model Advisor opens.
3 In the left pane, select By Product > Demo > Check to identify SINGLE to BOOL

conversion. If the By Product folder is not displayed in the Model Advisor window,
select Settings > Preferences > Show By Product Folder.

4 Right-click the check and select Run This Check. The Model Advisor compiles the
model and executes the check. The Model Advisor updates the model diagram, with
the inactive variant paths appearing as dimmed.

 Define the Compile Option for Custom Checks

7-79

Review the Model Advisor Results

Review the check analysis results in the Model Advisor. Click the hyperlink path to open
the violating block in the model editor.

In this example, because you defined the compile option in the sl_customization.m
file as

rec.CallbackContext = 'PostCompileForCodegen';

the Model Advisor generates warnings for the Data Type Conversion blocks in the active
paths and the inactive paths of the Variant system.

7 Create Model Advisor Checks

7-80

If you defined the compile option in the sl_customization.m file as

rec.CallbackContext = 'PostCompile';

the results include only the Data Type Conversion blocks in the active path.

 Define the Compile Option for Custom Checks

7-81

See Also
ModelAdvisor.Check | ModelAdvisor.Check.CallbackContext

More About
• “Define Custom Checks” on page 7-47
• “Variant Systems” (Simulink)

7 Create Model Advisor Checks

7-82

Exclude Blocks From Custom Checks
This example shows how to exclude blocks from custom checks. To save time during
model development and verification, you can exclude individual blocks from custom
checks in a Model Advisor analysis. To exclude custom checks from Simulink blocks and
Stateflow charts, use the ModelAdvisor.Check.supportExclusion and
Simulink.ModelAdvisor.filterResultWithExclusion functions in the
sl_customization.m file.

Update the sl_customization.m File

1 To open the example model, at the command prompt, type slvnvdemo_mdladv.
2 In the model window, double-click View demo sl_customization.m.
3 To exclude the custom check Check Simulink block font from blocks during Model

Advisor analysis, make three modifications to the sl_customization.m file.

a Enable the Check Simulink block font check to support check exclusions by
using the ModelAdvisor.Check.supportExclusion property. You can now
exclude the check from model blocks. After
rec.setInputParametersLayoutGrid([3 2]);, add
rec.supportExclusion = true;. The check 1 section of the function
defineModelAdvisorChecks now looks like:

% --- sample check 1
rec = ModelAdvisor.Check('com.mathworks.sample.Check1');
rec.Title = 'Check Simulink block font';
rec.TitleTips = 'Example style three callback';
rec.setCallbackFcn(@SampleStyleThreeCallback,'None','StyleThree');
rec.setInputParametersLayoutGrid([3 2]);
rec.supportExclusion = true;

b Use the Simulink.ModelAdvisor.filterResultWithExclusion function to
filter model objects causing a check warning or failure with checks that have
exclusions enabled. To do this, there are two locations in the
sl_customization.m file to modify, both in the [ResultDescription,
ResultDetails] = SampleStyleThreeCallback(system) function:

• After both instances of

searchResult = setdiff(allBlks, regularBlks);

add

 Exclude Blocks From Custom Checks

7-83

searchResult = mdladvObj.filterResultWithExclusion(searchResult);

• In the first location, the function now looks like:

% find regular font name blocks
regularBlks = find_system(allBlks,'FontName',regularFontName);

% look for different font blocks in the system
searchResult = setdiff(allBlks, regularBlks);
searchResult = mdladvObj.filterResultWithExclusion(searchResult);
if ~isempty(searchResult)

• In the second location, the function now looks like:

% find regular font size blocks
regularBlks = find_system(allBlks,'FontSize',regularFontSize);
% look for different font size blocks in the system
searchResult = setdiff(allBlks, regularBlks);
searchResult = mdladvObj.filterResultWithExclusion(searchResult);
if ~isempty(searchResult)

4 Save the sl_customization.m file. If you are asked if it is OK to overwrite the file,
click OK.

Create and Save Exclusions

1 In the Modeling tab, select Model Advisor to open the Model Advisor.

Note If the By Product folder is not displayed in the Model Advisor window, select
Show By Product Folder from the Settings > Preferences dialog box.

2 In the left pane of the Model Advisor window, select the By Product > Demo >
Check Simulink block font check. In the right pane, select Run This Check. The
check fails.

3
In the Model Advisor window, click the Enable highlighting button (). The
blocks causing the Check Simulink block font check failure are highlighted in
yellow.

4 In the model window, right-click the X block and select Model Advisor > Exclude
block only > Check Simulink block font.

5 In the Model Advisor Exclusion Editor, click OK to create the exclusion file.
6 In the model window, right-click the Input block and select Model Advisor >

Exclude block only > Check Simulink block font.

7 Create Model Advisor Checks

7-84

Review Exclusions

1 In the Model Advisor Exclusion Editor, click OK to update the exclusion file.
2 In the left pane of the Model Advisor window, select the By Product > Demo >

Check Simulink block font check. In the right pane, select Run This Check. The
check now passes. In the right-pane of the Model Advisor window, you can see the
Check Exclusion Rules that the Model Advisor during the analysis.

3 Close slvnvdemo_mdladv.

See Also
Simulink.ModelAdvisor | supportExclusion

Related Examples
• Example of Excluding Gain and Outport Blocks From Checks on page 3-21
• Excluding Blocks From Model Advisor Checks on page 3-14

More About
• “Run Model Advisor Checks and Review Results” on page 3-5
• “Address Model Check Results with Highlighting” (Simulink)

 See Also

7-85

Format Check Results

Format Results
You can make the analysis results of your custom checks appear similar to each other
with minimal scripting using the ModelAdvisor.FormatTemplate class.

If this format template does not meet your needs, or if you want to format action results,
use the Model Advisor Formatting API to produce formatted outputs in the Model Advisor.
The following constructors of the ModelAdvisor class allow you to format the output.

Constructor Description
ModelAdvisor.Text Create Model Advisor text output.
ModelAdvisor.List Create list.
ModelAdvisor.Table Create table.
ModelAdvisor.Paragraph Create and format paragraph.
ModelAdvisor.LineBreak Insert line break.
ModelAdvisor.Image Include image in Model Advisor output.

Format Text
Text is the simplest form of output. You can format text in many different ways. The
default text formatting is:

• Empty
• Default color (black)
• Unformatted (not bold, italicized, underlined, linked, subscripted, or superscripted)

To change text formatting, use the ModelAdvisor.Text constructor. When you want one
type of formatting for all text, use this syntax:

ModelAdvisor.Text(content, {attributes})

When you want multiple types of formatting, you must build the text.
t1 = ModelAdvisor.Text('It is ');
t2 = ModelAdvisor.Text('recommended', {'italic'});
t3 = ModelAdvisor.Text(' to use same font for ');

7 Create Model Advisor Checks

7-86

t4 = ModelAdvisor.Text('blocks', {'bold'});
t5 = ModelAdvisor.Text(' for a uniform appearance in the model.');

result = [t1, t2, t3, t4, t5];

Add ASCII and Extended ASCII characters using the MATLAB char command. For more
information, see the ModelAdvisor.Text class page.

Format Lists
You can create two types of lists: numbered and bulleted. The default list formatting is
bulleted. Use the ModelAdvisor.List constructor to create and format lists. You can
create lists with indented subsections, formatted as either numbered or bulleted.

subList = ModelAdvisor.List();
subList.setType('numbered')
subList.addItem(ModelAdvisor.Text('Sub entry 1', {'pass','bold'}));
subList.addItem(ModelAdvisor.Text('Sub entry 2', {'pass','bold'}));

topList = ModelAdvisor.List();
topList.addItem([ModelAdvisor.Text('Entry level 1',{'keyword','bold'}), subList]);
topList.addItem([ModelAdvisor.Text('Entry level 2',{'keyword','bold'}), subList]);

Format Tables
The default table formatting is:

• Default color (black)
• Left justified
• Bold title, row, and column headings

Change table formatting using the ModelAdvisor.Table constructor.

This example creates a subtable within a table.

table1 = ModelAdvisor.Table(1,1);
table2 = ModelAdvisor.Table(2,3);
table2.setHeading('Table 2');
table2.setHeadingAlign('center');
table2.setColHeading(1, 'Header 1');
table2.setColHeading(2, 'Header 2');
table2.setColHeading(3, 'Header 3');
table1.setHeading('Table 1');
table1.setEntry(1,1,table2);

 Format Check Results

7-87

This example creates a table with five rows and five columns containing randomly
generated numbers. Use the MATLAB code in a callback function to create the table. The
Model Advisor displays table1 in the results.

% ModelAdvisor.Table example

matrixData = rand(5,5) * 10^5;

% initialize a table with 5 rows and 5 columns (heading rows not counting)
table1 = ModelAdvisor.Table(5,5);

% set column headings
for n=1:5
 table1.setColHeading(n, ['Column ', num2str(n)]);
end

% set alignment of second column heading
table1.setColHeadingAlign(2, 'center');

% set column width of second column
table1.setColWidth(2, 3);

% set row headings
for n=1:5
 table1.setRowHeading(n, ['Row ', num2str(n)]);
end

% set Table content
for rowIndex=1:5
 for colIndex=1:5
 table1.setEntry(rowIndex, colIndex, ...
 num2str(matrixData(rowIndex, colIndex)));

 % set alignment of entries in second row
 if colIndex == 2
 table1.setEntryAlign(rowIndex, colIndex, 'center');
 end
 end
end

% overwrite content of cell 3,3 with a ModelAdvisor.Text

7 Create Model Advisor Checks

7-88

text = ModelAdvisor.Text('Example Text');
table1.setEntry(3,3, text)

Format Paragraphs
You must handle paragraphs explicitly because most markup languages do not support
line breaks. The default paragraph formatting is:

• Empty
• Default color (black)
• Unformatted, (not bold, italicized, underlined, linked, subscripted, or superscripted)
• Aligned left

If you want to change paragraph formatting, use the ModelAdvisor.Paragraph class.

Formatted Output
The following is the example from “Simple Check Callback Function” on page 7-58,
reformatted using the Model Advisor Formatting API.
function result = SampleStyleOneCallback(system)
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);
if strcmp(get_param(bdroot(system), 'ScreenColor'),'white')
 result = ModelAdvisor.Text('Passed',{'pass'});
 mdladvObj.setCheckResultStatus(true);
else
 msg1 = ModelAdvisor.Text(...
 ['It is recommended to select a Simulink window screen color'...
 ' of white to ensure a readable and printable model. Click ']);
 msg2 = ModelAdvisor.Text('here');
 msg2.setHyperlink('matlab: set_param(bdroot,''ScreenColor'',''white'')');
 msg3 = ModelAdvisor.Text(' to change screen color to white.');
 result = [msg1, msg2, msg3];

 Format Check Results

7-89

 mdladvObj.setCheckResultStatus(false);
end

Format Linebreaks
You can add a line break between two lines of text with the ModelAdvisor.LineBreak
constructor.
result = ModelAdvisor.Paragraph;
addItem(result, [resultText1 ModelAdvisor.LineBreak resultText2]);

Format Images
To include an image in Model Advisor output, use the ModelAdvisor.Image constructor.
To create an Image object, use this syntax.
image_obj = ModelAdvisor.Image;

See Also
ModelAdvisor.Check | ModelAdvisor.FormatTemplate | ModelAdvisor.Task

Related Examples
• “Simple Check Callback Function” on page 7-58

More About
• Defining Custom Groups on page 8-14
• “Define Custom Checks” on page 7-47

7 Create Model Advisor Checks

7-90

Create Custom Configurations by
Organizing Checks and Folders

8

Create Custom Configurations
You can use the Model Advisor APIs and Model Advisor Configuration Editor available
with Simulink Check to do the tasks listed in the following table.

To See
Create custom configurations by organizing
Model Advisor checks and folders.

“Organize Checks and Folders Using the
Model Advisor Configuration Editor” on
page 8-5

Specify the order in which you make
changes to your model.

“Create Procedural-Based Configurations”
on page 9-5

Deploy custom configuration to your users. “How to Deploy Custom Configurations” on
page 10-3

8 Create Custom Configurations by Organizing Checks and Folders

8-2

Create Configurations by Organizing Checks and Folders
To customize the Model Advisor with MathWorks and custom checks, perform the
following tasks:

1 Review the information in “Requirements for Customizing the Model Advisor” on
page 6-2.

2 Optionally, author custom checks in a customization file. See “Create Model Advisor
Checks”.

3 Organize the checks into new and existing folders to create custom configurations.
See “Organize and Deploy Model Advisor Checks”.

a Identify which checks you want to include in your custom Model Advisor
configuration. You can use MathWorks checks and/or custom checks.

b Create the custom configurations using either of the following:

• Model Advisor Configuration Editor - “Organize Checks and Folders Using the
Model Advisor Configuration Editor” on page 8-5.

• A customization file - “Organize Customization File Checks and Folders” on
page 8-12.

c Verify the custom configuration. See “Verify and Use Custom Configurations” on
page 8-18.

4 Optionally, deploy the custom configurations to your users. See “Organize and Deploy
Model Advisor Checks”.

5 Verify that models comply with modeling guidelines. See “Run Model Advisor Checks
and Review Results” on page 3-5.

 Create Configurations by Organizing Checks and Folders

8-3

Create Procedural-Based Configurations
You can create a procedural-based configuration that allows you to specify the order in
which you make changes to your model. You organize checks into procedures using the
procedures API. A check in a procedure does not run until the previous check passes. A
procedural-based configuration runs until a check fails, requiring you to modify the model
to pass the check and proceed to the next check. Changes you make to your model to pass
the checks therefore follow a specific order.

To create a procedural-based configuration, perform the following tasks:

1 Review the information in “Requirements for Customizing the Model Advisor” on
page 6-2.

2 Decide on order of changes to your model.
3 Identify checks that provide information about the modifications you want to make to

your model. For example, if you want to modify your model optimization settings, the
Check optimization settings check provides information about the settings. You can
use custom checks and checks provided by MathWorks.

4 Optionally, author custom checks in a customization file. See “Create Model Advisor
Checks”.

5 Organize the checks into procedures for a procedural-based configuration. See
“Create Procedural-Based Configurations” on page 9-5.

a Create procedures using the procedure API. For detailed information, see
“Create Procedures Using the Procedures API” on page 9-2.

b Create the custom configuration by using a customization file. See “Organize
Customization File Checks and Folders” on page 8-12.

c Verify the custom configuration as described in “Verify and Use Custom
Configurations” on page 8-18.

6 Optionally, deploy the custom configurations to your users. For detailed information,
see “Organize and Deploy Model Advisor Checks”.

7 Verify that models comply with modeling guidelines. For detailed information, see
“Run Model Advisor Checks and Review Results” on page 3-5.

8 Create Custom Configurations by Organizing Checks and Folders

8-4

Organize Checks and Folders Using the Model Advisor
Configuration Editor

Overview of the Model Advisor Configuration Editor
The Model Advisor Configuration Editor allows you to specify the checks that you want to
use for edit-time checking, as well as the checks included in the Model Advisor. The
Model Advisor Configuration Editor interface consists of two windows, the Model Advisor
Configuration Editor and Model Advisor Check Browser

The Model Advisor Configuration Editor window contains two panes:

• Hierarchy - Lists the checks and folders in the current configuration
• Workflow - Defines the common workflow you use to create a custom configuration

You can use the Show field to specify the Model Advisor checks that are included in the
hierarchy:

• Edit-Time Supported Checks ― hierarchy only includes the Model Advisor checks
that are supported as edit-time checks

• All checks ― hierarchy includes all of the Model Advisor checks

 Organize Checks and Folders Using the Model Advisor Configuration Editor

8-5

Model Advisor Configuration Editor

When you select a folder or check in the hierarchy, the Workflow pane changes to display
information about the check or folder. You can change the display name of the check or
folder in this pane.

8 Create Custom Configurations by Organizing Checks and Folders

8-6

The Model Advisor Check Browser window includes a read-only list of available checks. If
you delete a check in the Model Advisor Configuration Editor, you can retrieve a copy of it
from the Model Advisor Check Browser.

 Organize Checks and Folders Using the Model Advisor Configuration Editor

8-7

Model Advisor Check Browser

This table specifies additional actions you can perform by using the Model Advisor
Configuration Editor.

To... Select...
Create new configurations File > New
Find checks and folders in the Model Advisor
Check Browser

View > Check Browser

Add checks and folders to the configuration Edit > Copy
Edit > Paste
Edit > New folder
The check or folder and drag and drop

Remove checks and folders from the
configuration

Edit > Delete
Edit > Cut

8 Create Custom Configurations by Organizing Checks and Folders

8-8

To... Select...
Reorder checks and folders Edit > Move up

Edit > Move down
The check or folder and drag and drop

Rename checks and folders

Note MathWorks folder display names are
restricted. When you rename a folder, you cannot
use the restricted display names.

The check or folder and edit Display Name in
right pane.

Allow or gray out the check box control for
checks and folders

Tip This capability is equivalent to enabling
checks, described in “Display and Enable
Checks” on page 7-48.

Edit > Enable
Edit > Disable

Save the configuration as a MAT file for use and
distribution

File > Save
File > Save As

Set the configuration so it opens by default in the
Model Advisor

File > Set Current Configuration as Default

Restore the MathWorks default configuration File > Restore Default Configuration
Load and edit saved configurations File > Open

Open the Model Advisor Configuration Editor
Prior to opening the Model Advisor Configuration Editor, verify that the current folder is
writable. If the folder is not writable, you see an error message when you start the Model
Advisor Configuration Editor.

Note

• The Model Advisor Configuration Editor uses the slprj folder in the code generation
folder (Simulink). If the slprj folder does not exist in the code generation folder, the
Model Advisor Configuration Editor creates it.

 Organize Checks and Folders Using the Model Advisor Configuration Editor

8-9

1 To include custom checks in the new Model Advisor configuration, update the
Simulink environment to include your sl_customization.m file.

2 Start the Model Advisor Configuration Editor using one of these methods:

• Programmatically ― At the MATLAB command line, enter
Simulink.ModelAdvisor.openConfigUI.

• From the Simulink editor ― In the Modeling tab, select Model Advisor >
Customize Edit-time Checks

• From the Model Advisor ― Select Settings > Open Configuration Editor

The Model Advisor Configuration Editor and Model Advisor Check Browser windows
open.

3 To specify the Model Advisor checks that you want to include in the Configuration
Editor hierarchy, in the Show field, select:

• Edit-Time Supported Checks ― hierarchy only includes the Model Advisor
checks that are supported as edit-time checks

• All checks ― hierarchy includes all of the Model Advisor checks

Organize Checks and Folders Using the Model Advisor
Configuration Editor
The following tutorial steps you through creating a custom configuration.

1 Open the Model Advisor Configuration Editor on page 8-9.
2 In the Model Advisor Configuration Editor, in the left pane, delete the By Product

and By Task folders, to start with a blank configuration.
3 Select the root node, which is labeled Model Advisor Configuration Editor.
4 In the toolbar, click the New Folder button to create a folder.
5 In the left pane, select the new folder.
6 In the right pane, edit Display Name to rename the folder. For the purposes of this

tutorial, rename the folder to Review Optimizations.
7 In the Model Advisor Check Browser window, in the Find field, enter optimization

to find Simulink > Check optimization settings.
8 Drag and drop Check optimization settings into Review Optimizations.

8 Create Custom Configurations by Organizing Checks and Folders

8-10

9 In the Model Advisor Check Browser window, find Simulink Check > Modeling
Standards > DO-178C/DO-331Checks > Check safety-related optimization
settings.

10 Drag and drop Check safety-related optimization settings into Review
Optimizations.

11 In the Model Advisor Configuration Editor window, expand Review Optimizations.
12 Rename Check optimization settings to Check Simulink optimization settings.
13 Select File > Save As to save the configuration.
14 Name the configuration optimization_configuration.mat.
15 Close the Model Advisor Configuration Editor window.

Tip To move a check to the first position in a folder:

1 Drag the check to the second position.
2 Right-click the check and select Move up.

See Also
Simulink.ModelAdvisor | ModelAdvisor.Check

Related Examples
• “Update the Environment to Include Your sl_customization File” on page 8-18

 See Also

8-11

Organize Customization File Checks and Folders

Customization File Overview
The sl_customization.m file contains a set of functions for registering and defining
custom checks, tasks, and groups. To set up the sl_customization.m file, follow the
guidelines in this table.

Note If the By Product folder is not displayed in the Model Advisor window, select Show
By Product Folder from the Settings > Preferences dialog box.

Function Description Required or Optional
sl_customization() Registers custom checks and

tasks, folders with the Simulink
customization manager at
startup. See “Register Checks”
on page 7-42.

Required for customizations to
the Model Advisor.

One or more check definitions Defines custom checks. See
“Define Custom Checks” on
page 7-47.

Required for custom checks and
to add custom checks to the By
Product folder.

One or more task definitions Defines custom tasks. See
“Define Custom Tasks” on page
8-14.

Required to add custom checks
to the Model Advisor, except
when adding the checks to the
By Product folder. Write one
task for each check that you add
to the Model Advisor.

One or more groups Defines custom groups. See
“Define Custom Tasks” on page
8-14.

Required to add custom tasks to
new folders in the Model
Advisor, except when adding a
new subfolder to the By
Product folder. Write one group
definition for each new folder.

8 Create Custom Configurations by Organizing Checks and Folders

8-12

Register Tasks and Folders
Create sl_customization Function

To add tasks and folders to the Model Advisor, create the sl_customization.m file on
your MATLAB path. Then create the sl_customization() function in the
sl_customization.m file on your MATLAB path.

Tip

• You can have more than one sl_customization.m file on your MATLAB path.
• Do not place an sl_customization.m file that customizes the Model Advisor in your

root MATLAB folder or its subfolders, except for the matlabroot/work folder.
Otherwise, the Model Advisor ignores the customizations that the file specifies.

The sl_customization function accepts one argument, a customization manager
object, as in this example:

function sl_customization(cm)

The customization manager object includes methods for registering custom checks, tasks,
and folders. Use these methods to register customizations specific to your application, as
described in the sections that follow.

Register Tasks and Folders

The customization manager provides the following methods for registering custom tasks
and folders:

• addModelAdvisorTaskFcn (@factorygroupDefinitionFcn)

Registers the tasks that you define in factorygroupDefinitionFcn to the By Task
folder of the Model Advisor.

The factorygroupDefinitionFcn argument is a handle to the function that defines
the checks to add to the Model Advisor as instances of the
ModelAdvisor.FactoryGroup class.

• addModelAdvisorTaskAdvisorFcn (@taskDefinitionFcn)

 Organize Customization File Checks and Folders

8-13

Registers the tasks and folders that you define in taskDefinitionFcn to the folder
in the Model Advisor that you specify using the ModelAdvisor.Root.publish
method or the ModelAdvisor.Group class.

The taskDefinitionFcn argument is a handle to the function that defines custom
tasks and folders. Simulink adds the checks and folders to the Model Advisor as
instances of the ModelAdvisor.Task or ModelAdvisor.Group classes.

The following example shows how to register custom tasks and folders:

Note If you add custom checks within the sl_customization.m file, include methods
for registering the checks in the sl_customization function.

Define Custom Tasks
Add Check to Custom or Multiple Folders Using Tasks

You can use custom tasks for adding checks to the Model Advisor, either in multiple
folders or in a single, custom folder. You define custom tasks in one or more functions that
specify the properties of each instance of the ModelAdvisor.Task class. Define one
instance of this class for each custom task that you want to add to the Model Advisor.
Then register the custom task. The following sections describe how to define custom
tasks.

To add a check to multiple folders or a single, custom folder:

1 Create a check using the ModelAdvisor.Check class.
2 Register a task wrapper for the check.
3 If you want to add the check to folders that are not already present, register and

create the folders using the ModelAdvisor.Group class.
4 Add a check to the task using the ModelAdvisor.Task.setCheck method.
5 Add the task to each folder using the ModelAdvisor.Task.addTask method and

the task ID.

Create Custom Tasks Using MathWorks Checks

You can add MathWorks checks to your custom folders by defining the checks as custom
tasks. When you add the checks as custom tasks, you identify checks by the check ID.

8 Create Custom Configurations by Organizing Checks and Folders

8-14

To find MathWorks check IDs:

1 In the hierarcy, navigate to the folder that contains the MathWorks check.
2 In the right pane of the Model Advisor, select the Source tab. The Model Advisor

displays the Title, TitleID, and Source information for each check in the folder.

Note If the Source tab is not available, open Settings > Preferences and select
Show Source Tab

3 Select and copy the TitleID of the check that you want to add as a task.

Display and Enable Tasks

The Visible, Enable, and Value properties interact the same way for tasks as they do
for checks.

Define Where Tasks Appear

You can specify where the Model Advisor places tasks within the Model Advisor using the
following guidelines:

• To place a task in a new folder in the Model Advisor Task Manager, use the
ModelAdvisor.Group class.

• To place a task in a new folder in the By Task folder, use the
ModelAdvisor.FactoryGroup class.

Task Definition Function

The following example shows a task definition function. This function defines three tasks.

Define Custom Folders
About Custom Folders

Use folders to group checks in the Model Advisor by functionality or usage. You define
custom folders in:

• A factory group definition function that specifies the properties of each instance of the
ModelAdvisor.FactoryGroup class.

 Organize Customization File Checks and Folders

8-15

• A task definition function that specifies the properties of each instance of the
ModelAdvisor.Group class.

Define one instance of the group classes for each folder that you want to add to the Model
Advisor.

Add Custom Folders

To add a custom folder:

1 Create the folder using the ModelAdvisor.Group or
ModelAdvisor.FactoryGroup classes.

2 Register the folder.

Define Where Custom Folders Appear

You can specify the location of custom folders within the Model Advisor using the
following guidelines:

• To define a new folder in the Model Advisor Task Manager, use the
ModelAdvisor.Group class.

• To define a new folder in the By Task folder, use the ModelAdvisor.FactoryGroup
class.

Note To define a new folder in the By Product folder, use the
ModelAdvisor.Root.publish method within a custom check. If the By Product folder
is not displayed in the Model Advisor window, select Show By Product Folder from the
Settings > Preferences dialog box.

Group Definition

The following examples shows a group definition. The definition places the tasks inside a
folder called My Group under the Model Advisor root. The task definition function
includes this group definition.

The following example shows a factory group definition function. The definition places the
checks into a folder called Demo Factory Group inside of the By Task folder.

8 Create Custom Configurations by Organizing Checks and Folders

8-16

Customization Example
The Simulink Check software provides an example that shows how to customize the
Model Advisor by adding:

• Custom checks
• Check input parameters
• Check actions
• Check list views to call the Model Advisor Result Explorer
• Custom tasks to include the custom checks in the Model Advisor
• Custom folders for grouping the checks
• Custom procedures

The example also provides the source code of the sl_customization.m file that
executes the customizations.

To run the example:

1 At the MATLAB command line, typeslvnvdemo_mdladv.
2 Follow the instructions in the model.

See Also
ModelAdvisor.Check | ModelAdvisor.FactoryGroup | ModelAdvisor.Group |
ModelAdvisor.Task | publish

Related Examples
• “Update the Environment to Include Your sl_customization File” on page 8-18

More About
• “Define Custom Checks” on page 7-47
• “Display and Enable Checks” on page 7-48
• “Register Checks” on page 7-42

 See Also

8-17

Verify and Use Custom Configurations

Update the Environment to Include Your sl_customization File
When you start Simulink, it reads customization (sl_customization.m) files. If you
change the contents of your customization file, update your environment by performing
these tasks:

1 If you previously started the Model Advisor:

a Close the model from which you started the Model Advisor
b Clear the data associated with the previous Model Advisor session by removing

the slprj folder from your code generation folder (Simulink).
2 If you have created custom checks, at the MATLAB command line, enter:

Advisor.Manager.refresh_customizations
3 Open your model.
4 Start the Model Advisor.

Verify Custom Configurations
To verify a custom configuration:

1 If you created custom checks, or created the custom configuration using the
sl_customization method, update the Simulink environment.

2 Open a model.
3 From the model window, start the Model Advisor.
4 Select Settings > Load Configuration. If you see a warning that the Model Advisor

report corresponds to a different configuration, click Load to continue.
5 In the Open dialog box, navigate to and select your custom configuration.
6 When the Model Advisor reopens, verify that the configuration contains the new

folders and checks. For example, the Review Optimizations folder and the Check
Simulink optimization settings and Check safety-related optimization settings
checks.

7 Optionally, run the checks.

8 Create Custom Configurations by Organizing Checks and Folders

8-18

See Also

More About
• “Organize Checks and Folders Using the Model Advisor Configuration Editor” on

page 8-5

 See Also

8-19

Customize Model Advisor Check for Nondefault Block
Attributes

You can customize the list of nondefault block parameters that are flagged by the Model
Advisor MAAB check Check for nondefault block attributes
(mathworks.maab.db_0140).

1 In the Model Advisor, select Settings > Open Configuration Editor.
2 Use the Find field to search for check ID db_0140. The Model Advisor Configuration

Editor window displays the check Check for nondefault block attributes.
3 To enable editing of the parameter list, on the right pane, select Input Parameters

> Standard > Custom.
4 In the table, use the Parameter cell to edit the default parameter value for the block

type . The parameters are separated with spaces.
5 Delete or add a parameter name that corresponds to the BlockType. For example, to

remove the rounding method parameter from the check for each gain block, find
Gain under BlockType. Under Parameter, delete the parameter name RndMeth.
Check ID: mathworks.maab.db_0140 no longer checks for the display of
nondefault rounding methods from gain blocks’ annotations.

See Also

More About
• “Check for nondefault block attributes”
• “Customize Model Advisor Check for Nondefault Block Attributes” on page 8-20
• db_0140: Display of basic block parameters

8 Create Custom Configurations by Organizing Checks and Folders

8-20

Automatically Fix Display of Nondefault Block
Parameters

To conform with Model Advisor MAAB check Check for nondefault block attributes
(mathworks.maab.db_0140), you can use the Add nondefault values into block
annotation button to automatically add descriptive text to the model editor window.

1 At the command prompt, type vdp and press Enter to open the van der Pol
Equation model.

2 The model has two blocks which do not display nondefault values as annotations.
From the Modeling tab, select Model Advisor to open the Model Advisor.

3 Select By Product > Simulink Check > Modeling Standards > MAAB Checks.
On the right pane, run the check by selecting Run Selected Checks.

4 The Model Advisor runs the check and displays a warning for the integrator block
that has a nonzero initial condition not currently displayed. On the Model Advisor
toolbar, select Highlighting > Enable Highlighting to highlight the blocks causing
the warning.

5 In the right pane of the Model Advisor window, select Add nondefault values into
block annotation to automatically add the nondefault attribute and value to the
integrator block’s annotation. Model Advisor displays InitialCondition = 2.

6 Run the check again to clear the warning.

 Automatically Fix Display of Nondefault Block Parameters

8-21

See Also

More About
• “Check for nondefault block attributes”
• “Automatically Fix Display of Nondefault Block Parameters” on page 8-21
• db_0140: Display of basic block parameters
• “Run Model Advisor Checks and Review Results” on page 3-5

8 Create Custom Configurations by Organizing Checks and Folders

8-22

Create Procedural-Based Model
Advisor Configurations

9

Create Procedures

What Is a Procedure?
A procedure is a series of checks. The checks in a procedure depend on passing the
previous checks. If Check A is the first check in a procedure and Check B follows, the
Model Advisor does not run Check B until Check A passes. Checks A and B can be either
custom or provided by MathWorks.

You create procedures with the ModelAdvisor.Procedure class API. You first add the
checks to tasks, which are wrappers for the checks. The tasks are added to procedures.

When creating procedural checks, be aware of potential conflicts with the checks. Verify
that it is possible to pass both checks.

Create Procedures Using the Procedures API
You use the ModelAdvisor.Procedure class to create procedural checks.

1 Add each check to a task using the ModelAdvisor.Task.setCheck method. The
task is a wrapper for the check. You cannot add checks directly to procedures.

2 Add each task to a procedure using the ModelAdvisor.Procedure.addTask
method.

Define Procedures
You define procedures in a procedure definition function that specifies the properties of
each instance of the ModelAdvisor.Procedure class. Define one instance of the
procedure class for each procedure that you want to add to the Model Advisor. Then
register the procedure using the ModelAdvisor.Root.register method.

Add Subprocedures and Tasks to Procedures

You can add subprocedures or tasks to a procedure. The tasks are wrappers for checks.

• Use the ModelAdvisor.Procedure.addProcedure method to add a subprocedure
to a procedure.

• Use the ModelAdvisor.Procedure.addTask method to add a task to a procedure.

9 Create Procedural-Based Model Advisor Configurations

9-2

Define Where Procedures Appear

You can specify where the Model Advisor places a procedure using the
ModelAdvisor.Group.addProcedure method.

Procedure Definition

The following code example adds procedures to a group:

%Create three procedures
MAP1=ModelAdvisor.Procedure('com.mathworks.sample.myProcedure1');
MAP2=ModelAdvisor.Procedure('com.mathworks.sample.myProcedure2');
MAP3=ModelAdvisor.Procedure('com.mathworks.sample.myProcedure3');

%Create a group
MAG = ModelAdvisor.Group('com.mathworks.sample.myGroup');

%Add the three procedures to the group
addProcedure(MAG, MAP1);
addProcedure(MAG, MAP2);
addProcedure(MAG, MAP3);

%register the group and procedures
mdladvRoot = ModelAdvisor.Root;
mdladvRoot.register(MAG);
mdladvRoot.register(MAP1);
mdladvRoot.register(MAP2);
mdladvRoot.register(MAP3);

The following code example adds subprocedures to a procedure:

%Create a procedure
MAP = ModelAdvisor.Procedure('com.mathworks.example.Procedure');

%Create 3 sub procedures
MAP1=ModelAdvisor.Procedure('com.mathworks.example.procedure_sub1');
MAP2=ModelAdvisor.Procedure('com.mathworks.example.procedure_sub2');
MAP3=ModelAdvisor.Procedure('com.mathworks.example.procedure_sub3');

%Add sub procedures to procedure
addProcedure(MAP, MAP1);
addProcedure(MAP, MAP2);
addProcedure(MAP, MAP3);

%register the procedures

 Create Procedures

9-3

mdladvRoot = ModelAdvisor.Root;
mdladvRoot.register(MAP);
mdladvRoot.register(MAP1);
mdladvRoot.register(MAP2);
mdladvRoot.register(MAP3);

The following code example adds tasks to a procedure:

%Create three tasks
MAT1=ModelAdvisor.Task('com.mathworks.tasksample.myTask1');
MAT2=ModelAdvisor.Task('com.mathworks.tasksample.myTask2');
MAT3=ModelAdvisor.Task('com.mathworks.tasksample.myTask3');

%Create a procedure
MAP = ModelAdvisor.Procedure('com.mathworks.tasksample.myProcedure');

%Add the three tasks to the procedure
addTask(MAP, MAT1);
addTask(MAP, MAT2);
addTask(MAP, MAT3);

%register the procedure and tasks
mdladvRoot = ModelAdvisor.Root;
mdladvRoot.register(MAP);
mdladvRoot.register(MAT1);
mdladvRoot.register(MAT2);
mdladvRoot.register(MAT3);

See Also
ModelAdvisor.Procedure | addProcedure | addTask | register | setCheck

Related Examples
• “Create Procedural-Based Configurations” on page 9-5

More About
• “Define Custom Tasks” on page 8-14

9 Create Procedural-Based Model Advisor Configurations

9-4

Create Procedural-Based Configurations

Overview of Procedural-Based Configurations
You can create a procedural-based configuration that allows you to specify the order in
which you make changes to your model. You organize checks into procedures using the
procedures API. A check in a procedure does not run until the previous check passes. A
procedural-based configuration runs until a check fails, requiring you to modify the model
to pass the check and proceed to the next check. Changes you make to your model to pass
the checks therefore follow a specific order.

To create a procedural-based configuration, perform the following tasks:

1 Review the information in “Requirements for Customizing the Model Advisor” on
page 6-2.

2 Decide on order of changes to your model.
3 Identify checks that provide information about the modifications you want to make to

your model. For example, if you want to modify your model optimization settings, the
Check optimization settings check provides information about the settings. You can
use custom checks and checks provided by MathWorks.

4 Optionally, author custom checks in a customization file. See “Create Model Advisor
Checks”.

5 Organize the checks into procedures for a procedural-based configuration. See
“Create Procedural-Based Configurations” on page 9-5.

a Create procedures using the procedure API. For detailed information, see
“Create Procedures Using the Procedures API” on page 9-2.

b Create the custom configuration by using a customization file. See “Organize
Customization File Checks and Folders” on page 8-12.

c Verify the custom configuration as described in “Verify and Use Custom
Configurations” on page 8-18.

6 Optionally, deploy the custom configurations to your users. For detailed information,
see “Organize and Deploy Model Advisor Checks”.

7 Verify that models comply with modeling guidelines. For detailed information, see
“Run Model Advisor Checks” (Simulink).

 Create Procedural-Based Configurations

9-5

Create a Procedural-Based Configuration
In this example, you examine a procedural-based configuration.

1 At the MATLAB command line, typeslvnvdemo_mdladv.
2 In the model window, select View demo sl_customization.m. The

sl_customization.m file opens in the MATLAB Editor window.

The file contains four checks created in the function defineModelAdvisorChecks:

• ModelAdvisor.Check('com.mathworks.sample.Check1') - Checks
Simulink block fonts.

• ModelAdvisor.Check('com.mathworks.sample.Check2') - Checks
Simulink window screen color.

• ModelAdvisor.Check('com.mathworks.sample.Check3') - Checks model
optimization settings.

• ModelAdvisor.Check('com.mathworks.sample.Check4') - Checks Gain
block usage.

Each check has a set of fix actions.
3 In the sl_customization.m file, examine the function defineTaskAdvisor.

• The ModelAdvisor.Procedure class API creates procedures My Procedure
and My sub_Procedure:
% Define procedures
MAP = ModelAdvisor.Procedure('com.mathworks.sample.ProcedureSample');
MAP.DisplayName='My Procedure';

MAP_sub = ModelAdvisor.Procedure('com.mathworks.sample.sub_ProcedureSample');
MAP_sub.DisplayName='My sub_Procedure';

• The ModelAdvisor.Task class API creates tasks MAT4, MAT5, MAT6, and MAT7.
The ModelAdvisor.Task.setCheck method adds the checks to the tasks:
% Define tasks
MAT4 = ModelAdvisor.Task('com.mathworks.sample.TaskSample4');
MAT4.DisplayName='Check Simulink block font';
MAT4.setCheck('com.mathworks.sample.Check1');
mdladvRoot.register(MAT4);

MAT5 = ModelAdvisor.Task('com.mathworks.sample.TaskSample5');
MAT5.DisplayName='Check Simulink window screen color';
MAT5.setCheck('com.mathworks.sample.Check2');
mdladvRoot.register(MAT5);

9 Create Procedural-Based Model Advisor Configurations

9-6

MAT6 = ModelAdvisor.Task('com.mathworks.sample.TaskSample6');
MAT6.DisplayName='Check model optimization settings';
MAT6.setCheck('com.mathworks.sample.Check3');
mdladvRoot.register(MAT6);

MAT7 = ModelAdvisor.Task('com.mathworks.sample.TaskSample7');
MAT7.DisplayName='Check gain block usage';
MAT7.setCheck('com.mathworks.sample.Check4');
mdladvRoot.register(MAT7);

• The ModelAdvisor.Procedure.addTask method adds task MAT4 to My
Procedure and tasks MAT5, MAT6, and MAT7 to My sub_Procedure. The
ModelAdvisor.Procedure.addProcedure method adds My sub_Procedure
to My Procedure:
% Add tasks to procedures:
% Add Task4 to MAP
MAP.addTask(MAT4);
% Now Add Task5 and Task6 to MAP_sub
MAP_sub.addTask(MAT5);
MAP_sub.addTask(MAT6);
MAP_sub.addTask(MAT7);
% Include the Sub-Procedure in the Procedure
MAP.addProcedure(MAP_sub);

4 In the Modeling tab, select Model Advisor. A System Selector — Model Advisor
dialog box opens. Click OK. The Model Advisor opens.

5 In the left pane, expand My Procedure > My sub_Procedure.

6 In the left pane of the Model Advisor, select My Procedure. In the right pane of the
Model Advisor, click Run Selected Checks. The Model Advisor Check Simulink
block font check fails. The Model Advisor does not check the remaining two checks in
the My sub_Procedure folder. Running the checks in the My sub_Procedure folder
depends on passing the Check Simulink block font check.

 Create Procedural-Based Configurations

9-7

7 In the Action section of the Model Advisor dialog box, click Fix block fonts.
8 In the left pane of the Model Advisor, select My Procedure. In the right pane of the

Model Advisor, click Run Selected Checks. The Check Simulink block font check
passes. The Model Advisor runs the Check Simulink window screen color check. This
check fails and the Model Advisor stops checking.

9 In the Action section of the Model Advisor dialog box, click Fix window screen
color.

10 In the left pane of the Model Advisor, select My sub_Procedure. In the right pane of
the Model Advisor, click Run Selected Checks. The Check Simulink window screen
color check passes. The Model Advisor runs the Check model optimization settings
check. This check warns.

11 In the Action section of the Model Advisor dialog box, click Fix model optimization
settings.

12 In the left pane of the Model Advisor, select Check model optimization settings. In the
right pane of the Model Advisor, click Run This Task. The Check model optimization
settings check passes.

See Also
ModelAdvisor.Procedure | addProcedure | addTask | register | setCheck

More About
• “Create Procedures” on page 9-2
• “Define Custom Checks” on page 7-47

9 Create Procedural-Based Model Advisor Configurations

9-8

Add Checks and Tasks to the Model Advisor
This example shows how to customize the Model Advisor using a MATLAB-based API.

Open the Example Model

Open the example model slvnvdemo_mdladv.

Open the Model Advisor

In the Modeling tab, select Model Advisor to open the Model Advisor.

In the System Selector dialog, click OK. For this example, the Model Advisor contains:

• Hidden shipping checks
• New checks in the By Task > My Group 2 folder

 Add Checks and Tasks to the Model Advisor

9-9

• Top-level folder My Group
• Top-level folder My Procedure that contains once check and a subprocedure My

sub_Procedure

Explore the Custom Folder

Explore the custom My Group folder:

• In the left pane, click the My Group folder.
• Select the first check, Example task with input parameter and auto-fix ability.
• In the right pane, click Run This Check.
• To examine the results in the Model Advisor Results Explorer dialog, click Explore

Result.
• To automatically fix the issues, return to the Model Advisor and, in the right pane,

click Fix block fonts.

Explore the Custom Procedure Folder

Explore the custom My Procedure folder:

• In the left pane, click the My Procedure folder.
• To run the procedure, in the right pane, click Run Selected Checks. The procedure

runs until a check fails.
• To automatically fix issues, in the Action section of the right pane, click the

corresponding fix button.

View the Customization Code

To implement these customizations, on the MATLAB path, create an
sl_customization.m file with the following:

function sl_customization(cm)
% SL_CUSTOMIZATION - Model Advisor customization demonstration.

% Copyright 2005-2017 The MathWorks, Inc.

% register custom checks
cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);
% register custom factory group
cm.addModelAdvisorTaskFcn(@defineModelAdvisorTasks);

9 Create Procedural-Based Model Advisor Configurations

9-10

% register custom tasks.
cm.addModelAdvisorTaskAdvisorFcn(@defineTaskAdvisor);

% -----------------------------
% defines Model Advisor Tasks
% -----------------------------
function defineModelAdvisorTasks
mdladvRoot = ModelAdvisor.Root;

% --- sample factory group
rec = ModelAdvisor.FactoryGroup('com.mathworks.sample.factorygroup');
rec.DisplayName='My Group 2';
rec.Description='Demo Factory Group';
rec.addCheck('com.mathworks.sample.Check1');
rec.addCheck('com.mathworks.sample.Check2');
rec.addCheck('com.mathworks.sample.Check3');
mdladvRoot.publish(rec); % publish inside By Group list

% -----------------------------
% defines Model Advisor Checks
% -----------------------------
function defineModelAdvisorChecks
mdladvRoot = ModelAdvisor.Root;

% --- sample check 1
rec = ModelAdvisor.Check('com.mathworks.sample.Check1');
rec.Title = 'Check Simulink block font';
rec.TitleTips = 'Example style three callback';
rec.setCallbackFcn(@SampleStyleThreeCallback,'None','StyleThree');
rec.setInputParametersLayoutGrid([3 2]);
% set input parameters
inputParam1 = ModelAdvisor.InputParameter;
inputParam1.Name = 'Skip font checks.';
inputParam1.Type = 'Bool';
inputParam1.Value = false;
inputParam1.Description = 'sample tooltip';
inputParam1.setRowSpan([1 1]);
inputParam1.setColSpan([1 1]);
inputParam2 = ModelAdvisor.InputParameter;
inputParam2.Name = 'Standard font size';
inputParam2.Value='12';
inputParam2.Type='String';
inputParam2.Description='sample tooltip';

 Add Checks and Tasks to the Model Advisor

9-11

inputParam2.setRowSpan([2 2]);
inputParam2.setColSpan([1 1]);
inputParam3 = ModelAdvisor.InputParameter;
inputParam3.Name='Valid font';
inputParam3.Type='Combobox';
inputParam3.Description='sample tooltip';
inputParam3.Entries={'Arial', 'Arial Black'};
inputParam3.setRowSpan([2 2]);
inputParam3.setColSpan([2 2]);
rec.setInputParameters({inputParam1,inputParam2,inputParam3});
% set fix operation
myAction = ModelAdvisor.Action;
myAction.setCallbackFcn(@sampleActionCB);
myAction.Name='Fix block fonts';
myAction.Description='Click the button to update all blocks with specified font';
rec.setAction(myAction);
rec.ListViewVisible = true;
mdladvRoot.publish(rec, 'Demo'); % publish check into Demo group.

% --- sample check 2
rec = ModelAdvisor.Check('com.mathworks.sample.Check2');
rec.Title = 'Check Simulink window screen color';
rec.TitleTips = 'Example style one callback';
rec.setCallbackFcn(@SampleStyleOneCallback,'None','StyleOne');
% set fix operation
myAction2 = ModelAdvisor.Action;
myAction2.setCallbackFcn(@sampleActionCB2);
myAction2.Name='Fix window screen color';
myAction2.Description='Click the button to change Simulink window screen color to white';
rec.setAction(myAction2);
mdladvRoot.publish(rec, 'Demo'); % publish check into Demo group.

% --- sample check 3
rec = ModelAdvisor.Check('com.mathworks.sample.Check3');
rec.Title = 'Check model optimization settings';
rec.TitleTips = 'Example style two callback';
rec.setCallbackFcn(@SampleStyleTwoCallback,'None','StyleTwo');
% set fix operation
myAction3 = ModelAdvisor.Action;
myAction3.setCallbackFcn(@sampleActionCB3);
myAction3.Name='Fix model optimization settings';
myAction3.Description='Click the button to turn on model optimization settings';
rec.setAction(myAction3);
mdladvRoot.publish(rec, 'Demo'); % publish check into Demo group.

9 Create Procedural-Based Model Advisor Configurations

9-12

% -----------------------------
% defines Model Advisor tasks
% please refer to Model Advisor API document for more details.
% -----------------------------
function defineTaskAdvisor
mdladvRoot = ModelAdvisor.Root;

MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');
MAT1.DisplayName='Example task with input parameter and auto-fix ability';
MAT1.setCheck('com.mathworks.sample.Check1');
mdladvRoot.register(MAT1);

MAT2 = ModelAdvisor.Task('com.mathworks.sample.TaskSample2');
MAT2.DisplayName='Example task 2';
MAT2.setCheck('com.mathworks.sample.Check2');
mdladvRoot.register(MAT2);

MAT3 = ModelAdvisor.Task('com.mathworks.sample.TaskSample3');
MAT3.DisplayName='Example task 3';
MAT3.setCheck('com.mathworks.sample.Check3');
mdladvRoot.register(MAT3);

MAG = ModelAdvisor.Group('com.mathworks.sample.GroupSample');
MAG.DisplayName='My Group';
MAG.addTask(MAT1);
MAG.addTask(MAT2);
MAG.addTask(MAT3);
mdladvRoot.publish(MAG); % publish under Root

% Define procedures
MAP = ModelAdvisor.Procedure('com.mathworks.sample.ProcedureSample');
MAP.DisplayName='My Procedure';

MAP_sub = ModelAdvisor.Procedure('com.mathworks.sample.sub_ProcedureSample');
MAP_sub.DisplayName='My sub_Procedure';

% Define tasks
MAT4 = ModelAdvisor.Task('com.mathworks.sample.TaskSample4');
MAT4.DisplayName='Check Simulink block font';
MAT4.setCheck('com.mathworks.sample.Check1');
mdladvRoot.register(MAT4);

 Add Checks and Tasks to the Model Advisor

9-13

MAT5 = ModelAdvisor.Task('com.mathworks.sample.TaskSample5');
MAT5.DisplayName='Check Simulink window screen color';
MAT5.setCheck('com.mathworks.sample.Check2');
mdladvRoot.register(MAT5);

MAT6 = ModelAdvisor.Task('com.mathworks.sample.TaskSample6');
MAT6.DisplayName='Check model optimization settings';
MAT6.setCheck('com.mathworks.sample.Check3');
mdladvRoot.register(MAT6);

% Add tasks to procedures:
% Add Task4 to MAP
MAP.addTask(MAT4);
% Now Add Task5 and Task6 to MAP_sub
MAP_sub.addTask(MAT5);
MAP_sub.addTask(MAT6);
% Include the Sub-Procedure in the Procedure
MAP.addProcedure(MAP_sub);

mdladvRoot.register(MAP_sub); % publish under Root
mdladvRoot.publish(MAP); % publish under Root

% -----------------------------
% Sample StyleThree callback function,
% please refer to Model Advisor API document for more details.
% -----------------------------
function [ResultDescription, ResultDetails] = SampleStyleThreeCallback(system)
ResultDescription ={};
ResultDetails ={};

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);
mdladvObj.setCheckResultStatus(true);
needEnableAction = false;
% get input parameters
inputParams = mdladvObj.getInputParameters;
skipFontCheck = inputParams{1}.Value;
regularFontSize = inputParams{2}.Value;
regularFontName = inputParams{3}.Value;
if skipFontCheck
 ResultDescription{end+1} = ModelAdvisor.Paragraph('Skipped.');
 ResultDetails{end+1} = {};
 return
end

9 Create Procedural-Based Model Advisor Configurations

9-14

regularFontSize = str2double(regularFontSize);
if regularFontSize<1 || regularFontSize>=99
 mdladvObj.setCheckResultStatus(false);
 ResultDescription{end+1} = ModelAdvisor.Paragraph('Invalid font size. Please enter a value between 1 and 99');
 ResultDetails{end+1} = {};
end

% find all blocks inside current system
allBlks = find_system(system);

% block diagram doesn't have font property
% get blocks inside current system that have font property
allBlks = setdiff(allBlks, {system});

% find regular font name blocks
regularBlks = find_system(allBlks,'FontName',regularFontName);

% look for different font blocks in the system
searchResult = setdiff(allBlks, regularBlks);
if ~isempty(searchResult)
 ResultDescription{end+1} = ModelAdvisor.Paragraph(['It is recommended to use same font for blocks to ensure uniform appearance of model. '...
 'The following blocks use a font other than ' regularFontName ': ']);
 ResultDetails{end+1} = searchResult;
 mdladvObj.setCheckResultStatus(false);
 myLVParam = ModelAdvisor.ListViewParameter;
 myLVParam.Name = 'Invalid font blocks'; % the name appeared at pull down filter
 myLVParam.Data = get_param(searchResult,'object')';
 myLVParam.Attributes = {'FontName'}; % name is default property
 mdladvObj.setListViewParameters({myLVParam});
 needEnableAction = true;
else
 ResultDescription{end+1} = ModelAdvisor.Paragraph('All block font names are identical.');
 ResultDetails{end+1} = {};
end

% find regular font size blocks
regularBlks = find_system(allBlks,'FontSize',regularFontSize);
% look for different font size blocks in the system
searchResult = setdiff(allBlks, regularBlks);
if ~isempty(searchResult)
 ResultDescription{end+1} = ModelAdvisor.Paragraph(['It is recommended to use same font size for blocks to ensure uniform appearance of model. '...
 'The following blocks use a font size other than ' num2str(regularFontSize) ': ']);
 ResultDetails{end+1} = searchResult;
 mdladvObj.setCheckResultStatus(false);

 Add Checks and Tasks to the Model Advisor

9-15

 myLVParam = ModelAdvisor.ListViewParameter;
 myLVParam.Name = 'Invalid font size blocks'; % the name appeared at pull down filter
 myLVParam.Data = get_param(searchResult,'object')';
 myLVParam.Attributes = {'FontSize'}; % name is default property
 mdladvObj.setListViewParameters({mdladvObj.getListViewParameters{:}, myLVParam});
 needEnableAction = true;
else
 ResultDescription{end+1} = ModelAdvisor.Paragraph('All block font sizes are identical.');
 ResultDetails{end+1} = {};
end

mdladvObj.setActionEnable(needEnableAction);
mdladvObj.setCheckErrorSeverity(1);

% -----------------------------
% Sample StyleOne callback function,
% please refer to Model Advisor API document for more details.
% -----------------------------
function result = SampleStyleOneCallback(system)
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system); % get object

if strcmp(get_param(bdroot(system),'ScreenColor'),'white')
 result = ModelAdvisor.Text('Passed',{'pass'});
 mdladvObj.setCheckResultStatus(true); % set to pass
 mdladvObj.setActionEnable(false);
else
 result = ModelAdvisor.Text('It is recommended to select a Simulink window screen color of white to ensure a readable and printable model. ');
 mdladvObj.setCheckResultStatus(false); % set to fail
 mdladvObj.setActionEnable(true);
 mdladvObj.setCheckErrorSeverity(1);
end

% -----------------------------
% Sample StyleTwo callback function,
% please refer to Model Advisor API document for more details.
% -----------------------------
function [ResultDescription, ResultDetails] = SampleStyleTwoCallback(system)
ResultDescription ={};
ResultDetails ={};

model = bdroot(system);
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system); % get object
mdladvObj.setCheckResultStatus(true); % init result status to pass

9 Create Procedural-Based Model Advisor Configurations

9-16

% Check Simulation optimization setting
ResultDescription{end+1} = ModelAdvisor.Paragraph('Check Simulation optimization settings:');
if strcmp(get_param(model,'BlockReduction'),'off')
 ResultDetails{end+1} = {ModelAdvisor.Text('It is recommended to turn on Block reduction optimization option.',{'italic'})};
 mdladvObj.setCheckResultStatus(false); % set to fail
 mdladvObj.setActionEnable(true);
else
 ResultDetails{end+1} = {ModelAdvisor.Text('Passed',{'pass'})};
end

% Check code generation optimization setting
ResultDescription{end+1} = ModelAdvisor.Paragraph('Check code generation optimization settings:');
ResultDetails{end+1} = {};
if strcmp(get_param(model,'LocalBlockOutputs'),'off')
 ResultDetails{end}{end+1} = ModelAdvisor.Text('It is recommended to turn on Enable local block outputs option.',{'italic'});
 ResultDetails{end}{end+1} = ModelAdvisor.LineBreak;
 mdladvObj.setCheckResultStatus(false); % set to fail
 mdladvObj.setActionEnable(true);
end
if strcmp(get_param(model,'BufferReuse'),'off')
 ResultDetails{end}{end+1} = ModelAdvisor.Text('It is recommended to turn on Reuse block outputs option.',{'italic'});
 mdladvObj.setCheckResultStatus(false); % set to fail
 mdladvObj.setActionEnable(true);
end
if isempty(ResultDetails{end})
 ResultDetails{end}{end+1} = ModelAdvisor.Text('Passed',{'pass'});
end

% -----------------------------
% Sample action callback function,
% please refer to Model Advisor API document for more details.
% -----------------------------
function result = sampleActionCB(taskobj)
mdladvObj = taskobj.MAObj;
system = getfullname(mdladvObj.System);

% get input parameters
inputParams = mdladvObj.getInputParameters;
regularFontSize = inputParams{2}.Value;
regularFontName = inputParams{3}.Value;

% find all blocks inside current system
allBlks = find_system(system);

 Add Checks and Tasks to the Model Advisor

9-17

% block diagram itself doesn't have font property
% get blocks inside current system that have font property
allBlks = setdiff(allBlks, {system});

% find regular font name blocks
regularBlks = find_system(allBlks,'FontName',regularFontName);
% look for different font blocks in the system
fixBlks = setdiff(allBlks, regularBlks);
% fix them one by one
for i=1:length(fixBlks)
 set_param(fixBlks{i},'FontName',regularFontName);
end
% save result
resultText1 = ModelAdvisor.Text([num2str(length(fixBlks)), ' blocks has been updated with specified font ', regularFontName]);

% find regular font size blocks
regularBlks = find_system(allBlks,'FontSize',str2double(regularFontSize));
% look for different font size blocks in the system
fixBlks = setdiff(allBlks, regularBlks);
% fix them one by one
for i=1:length(fixBlks)
 set_param(fixBlks{i},'FontSize',regularFontSize);
end
% save result
resultText2 = ModelAdvisor.Text([num2str(length(fixBlks)), ' blocks has been updated with specified font size ', regularFontSize]);
result = ModelAdvisor.Paragraph;
result.addItem([resultText1 ModelAdvisor.LineBreak resultText2]);
mdladvObj.setActionEnable(false);

% -----------------------------
% Sample action callback function for Check Simulink window screen color
% please refer to Model Advisor API document for more details.
% -----------------------------
function result = sampleActionCB2(taskobj)
mdladvObj = taskobj.MAObj;
system = mdladvObj.System;
set_param(bdroot(system),'ScreenColor','white');
result = ModelAdvisor.Text('Simulink window screen color has been updated to white color.');
mdladvObj.setActionEnable(false);

% -----------------------------
% Sample action callback function for model optimization settings
% please refer to Model Advisor API document for more details.

9 Create Procedural-Based Model Advisor Configurations

9-18

% -----------------------------
function result = sampleActionCB3(taskobj)
mdladvObj = taskobj.MAObj;
model = bdroot(mdladvObj.System);
set_param(model,'BlockReduction','on');
set_param(model,'LocalBlockOutputs','on');
set_param(model,'BufferReuse','on');
result = ModelAdvisor.Text('Model optimization options "Block reduction", "Enable local block outputs", and "Reuse block outputs" have been turned on');
mdladvObj.setActionEnable(false);

 Add Checks and Tasks to the Model Advisor

9-19

Deploy Custom Configurations

10

Overview of Deploying Custom Configurations

About Deploying Custom Configurations
When you create a custom configuration, often you deploy the custom configuration to
your development group. Deploying the custom configuration allows your development
group to review models using the same checks.

After you create a custom configuration, you can use it in the Model Advisor, or deploy the
configuration to your users. You can deploy custom configurations whether you created
the configuration using the Model Advisor Configuration Editor or within the
customization file.

Deploying Custom Configurations Workflow
When you deploy custom configurations, you:

1 Optionally author custom checks, as described in “Create Model Advisor Checks”.
2 Organize checks and folders to create custom configurations, as described in “Create

Custom Configurations” on page 8-2.
3 Deploy the custom configuration to your users, as described in “How to Deploy

Custom Configurations” on page 10-3.

10 Deploy Custom Configurations

10-2

How to Deploy Custom Configurations
To deploy a custom configuration:

1 Determine which files to distribute. You might need to distribute more than one file.

If You... Using the... Distribute...
Created custom checks Customization file • sl_customization.

m
• Files containing check

and action callback
functions (if separate)

Organized checks and
folders

Model Advisor
Configuration Editor

Configuration MAT file

Customization file sl_customization.m
2 Distribute the files and tell the user to include these files on the MATLAB path.
3 Instruct the user to load the custom configuration.

See Also

Related Examples
• “Manually Load and Set the Default Configuration” on page 10-4

 How to Deploy Custom Configurations

10-3

Manually Load and Set the Default Configuration
When you use the Model Advisor, you can load any configuration. Once you load a
configuration, you can set it so that the Model Advisor use that configuration every time
you open the Model Advisor.

1 In the Modeling tab, select Model Advisor to open the Model Advisor.
2 Select Settings > Load Configuration.
3 In the Open dialog box, navigate to and select the configuration file that you want to

edit.
4 Click Open.

Simulink reloads the Model Advisor using the new configuration.
5 Optionally, when the Model Advisor opens, set the current configuration as the

default by selecting Settings > Set Current Configuration as Default.

See Also

Related Examples
• “Update the Environment to Include Your sl_customization File” on page 8-18

More About
• “Organize Checks and Folders Using the Model Advisor Configuration Editor” on

page 8-5

10 Deploy Custom Configurations

10-4

Model Slicer

• “Highlight Functional Dependencies” on page 11-2
• “Highlight Dependencies for Multiple Instance Reference Models” on page 11-9
• “Refine Highlighted Model” on page 11-13
• “Refine Dead Logic for Dependency Analysis” on page 11-26
• “Create a Simplified Standalone Model” on page 11-33
• “Highlight Active Time Intervals by Using Activity-Based Time Slicing” on page 11-34
• “Simplify a Standalone Model by Inlining Content” on page 11-43
• “Workflow for Dependency Analysis” on page 11-47
• “Configure Model Highlight and Sliced Models” on page 11-50
• “Model Slicer Considerations and Limitations” on page 11-54
• “Using Model Slicer with Stateflow” on page 11-63
• “Isolating Dependencies of an Actuator Subsystem” on page 11-65
• “Isolate Model Components for Functional Testing” on page 11-70
• “Refine Highlighted Model by Using Existing .slslicex or Dead Logic Results”

on page 11-80
• “Simplification of Variant Systems” on page 11-83
• “Programmatically Resolve Unexpected Behavior in a Model with Model Slicer”

on page 11-85
• “Refine Highlighted Model Slice by Using Model Slicer Data Inspector”

on page 11-99
• “Debug Slice Simulation by Using Fast Restart Mode” on page 11-106
• “Isolate Referenced Model for Functional Testing” on page 11-115
• “Analyze the Dead Logic” on page 11-121
• “Investigate Highlighted Model Slice by Using Model Slicer Data Inspector”

on page 11-127

11

Highlight Functional Dependencies
Large models often contain many levels of hierarchy, complicated signals, and complex
mode logic. You can use Model Slicer to understand which parts of your model are
significant for a particular behavior. This example shows how to use Model Slicer to
explore the behavior of the sldvSliceClimateControlExample model. You first select
an area of interest, and then highlight the related blocks in the model. In this example,
you trace the dependency paths upstream of Out1 to highlight which portions of the
model affect its behavior.

Open the model and highlight the functional dependencies of a signal in the system:

1 Add the example folder to the search path.

addpath(fullfile(docroot,'toolbox','simulink','examples'))
2 Open the sldvSliceClimateControlExample model.

sldvSliceClimateControlExample
3 Select Analysis > Model Slicer to open the Model Slice Manager.

When you open the Model Slice Manager, Model Slicer compiles the model. You then
configure the model slice properties.

4 In the Model Slice Manager, click the arrow to expand the Slice configuration list.
5 Set the slice properties:

• Name: Out1Slice
• Color: (magenta)
• Signal Propagation: upstream

Model Slicer can also highlight the constructs downstream of or bidirectionally from
a block in your model, depending on which direction you want to trace the signal
propagation.

6 Add Out1 as a starting point. In the model, right-click Out1 and select Model Slicer
> Add as Starting Point.

11 Model Slicer

11-2

The Model Slicer now highlights the upstream constructs that affect Out1.

 Highlight Functional Dependencies

11-3

If you create two slice configurations, you can highlight the intersecting portions of their
highlights. Create a new slice configuration and view the intersecting portions of the slice
configuration you created above and the new slice configuration:

1 Create a new slice configuration with the following properties

• Name: Out3Slice
• Color: (red)
• Signal Propagation: upstream
• Starting point: Out3

11 Model Slicer

11-4

2 In the Model Slice Manager, select both the Out1Slice slice configuration and the
Out3Slice slice configuration.

 Highlight Functional Dependencies

11-5

Model Slicer highlights portions of the model as follows:

• The portions of the model that are exclusively upstream of Out1 are highlighted in
cyan.

• The portions of the model that are exclusively upstream of Out3 are highlighted in
red.

11 Model Slicer

11-6

• The portions of the model that are upstream of both Out1 and Out3 are highlighted in
black.

After you highlight a portion of your model, you can then refine the highlighted model to
an area of interest. Or, you can create a simplified standalone model containing only the
highlighted portion of your model.

To view the details of the highlighted model in web view, click Export to Web. The web
view HTML file is stored in <current folder>\<model_name>\webview.html.

 Highlight Functional Dependencies

11-7

See Also

More About
• “Refine Highlighted Model” on page 11-13
• “Create a Simplified Standalone Model” on page 11-33
• “Model Slicer Considerations and Limitations” on page 11-54

11 Model Slicer

11-8

Highlight Dependencies for Multiple Instance Reference
Models

To highlight the functional dependencies in a Simulink model with multiple instances of a
referenced model, use Model Slicer. You can use Model Slicer on a Simulink model that
contains single or multiple references to a same model in normal simulation mode.

This example shows the behaviour of Model Slicer when there are multiple instances of
the referenced model. The slslicerdemo_multi_instance model consists of
sldemo_mdlref_counter referenced two times with different inputs during the course
of the signal flow transition.

1. Open the model slslicerdemo_multi_instance.slx.

open_system('slslicerdemo_multi_instance');

2. On the Apps tab, under Model Verification, Validation, and Test gallery, click
Model Slicer.

3. In the Model Slicer window, click Add all outports. This sets OutA and OutB as
starting points.

4. Ensure that the Signal Propagation is set to upstream.

5. In the Simulation time window section, click Run simulation.

 Highlight Dependencies for Multiple Instance Reference Models

11-9

6. In the simulation time window, click OK. The model simulation starts.

11 Model Slicer

11-10

7. The simulated model highlights the upstream dependency of the outports OutA and
OutB.

 Highlight Dependencies for Multiple Instance Reference Models

11-11

You can notice that the referenced model in both the instances shows different signal
propagations highlighted by Simulink Slicer for which the signal travels.

8. To generate the slice, click Generate Slice.

More About

• “Highlight Functional Dependencies” on page 11-2
• “Model Slicer Considerations and Limitations” on page 11-54

11 Model Slicer

11-12

Refine Highlighted Model
After you highlight a model using Model Slicer, you can refine the dependency paths in
the highlighted portion of the model. Using Model Slicer, you can refine a highlighted
model by including only those blocks used in a portion of a simulation time window, or by
excluding blocks or certain inputs of switch blocks. By refining the highlighted portion of
your model, you can include only the relevant parts of your model.

In this section...
“Define a Simulation Time Window” on page 11-13
“Exclude Blocks” on page 11-19
“Exclude Inputs of a Switch Block” on page 11-22

Define a Simulation Time Window
You can refine a highlighted model to include only those blocks used in a portion of a
simulation time window. Defining the simulation time window holds some switch blocks
constant, and as a result removes inactive inputs.

1 Add the example folder to the search path.

addpath(fullfile(docroot,'toolbox','simulink','examples'))
2 Open the sldvSliceClimateControlExample model.

sldvSliceClimateControlExample
3 On the Apps tab, under Model Verification, Validation, and Test gallery, click

Model Slicer.

When you open the Model Slice Manager, Model Slicer compiles the model. You then
configure the model slice properties.

4 In the Model Slice Manager, click the arrow to expand the Slice configuration list.
5 Set the slice properties:

• Name: Out1Simulation
• Color: (cyan)
• Signal propagation: upstream

 Refine Highlighted Model

11-13

6 In the top level of the model, select the Out1 block as the slice starting point. Right-
click the Out1 block and select Model Slicer > Add as Starting Point.

The model is highlighted.
7 In the Model Slice Manager, select Simulation time window.
8 To specify the stop time of the simulation time window, click the run simulation

button in the Model Slice Manager.

11 Model Slicer

11-14

9 Set the Stop time to 10.
10 Click OK to start the simulation.

The path is restricted to only those blocks that are active until the stop time that you
entered.

 Refine Highlighted Model

11-15

11 To highlight the model for a defined simulation time window, set the Stop time to 5.
Click Highlight.

11 Model Slicer

11-16

 Refine Highlighted Model

11-17

12 To see how this constraint affects the highlighted portion of the model, open the
Refrigeration subsystem.

The highlighted portion of the model includes only the input ports of switches that
are active in the simulation time window that you specified.

After you refine your highlighted model to include only those blocks used in a portion of a
simulation time window, you can then “Create a Simplified Standalone Model” on page
11-33 incorporating the highlighted portion of your model.

11 Model Slicer

11-18

Exclude Blocks
You can refine a highlighted model to exclude blocks from the analysis. Excluding a block
halts the propagation of dependencies, so that signals and model items beyond the
excluded block in the analysis direction are ignored.

Exclusion points are useful for viewing a simplified set of model dependencies. For
example, control feedback paths create wide dependencies and extensive model
highlighting. You can use an exclusion point to restrict the analysis, particularly if your
model has feedback paths.

Note Simplified standalone model creation is not supported for highlighted models with
exclusion points.

1 In the Model Slice Manager, click the arrow to expand the Slice configuration list.
2

To add a new slice configuration, click the add new button .
3 Set the slice properties:

• Name: Out1Excluded
• Color: (red)
• Signal Propagation: upstream

4 In the top level of the model, select the Out1 block as the slice starting point. Right-
click the Out1 block and select Model Slicer > Add as Starting Point.

 Refine Highlighted Model

11-19

The model is highlighted.
5 To open the subsystem, double-click Refrigeration.
6 Right-click the Fan switch block, and then select Model Slicer > Add as Exclusion

Point.

The blocks that are exclusively upstream of the Fan switch block are no longer
highlighted. The DT Fan Data Store Read block is no longer highlighted.

11 Model Slicer

11-20

7 To see how this constraint affects the highlighted portion of the model, view the
parent system.

The DSM fan temp Data Store Memory block and the Write2 Data Store Write
block are no longer highlighted, because the DT Fan Data Store Read in the
Refrigeration subsystem no longer accesses them.

 Refine Highlighted Model

11-21

Exclude Inputs of a Switch Block
For complex signal routing, you can constrain the dependency analysis paths to a subset
of the available paths through switch blocks. Constraints appear in the Model Slice
Manager.

Note Simplified standalone model creation is not supported for highlighted models with
constrained switch blocks.

1 Double-click Refrigeration to open the subsystem.
2 Constrain the On switch block:

• Right-click the switch block and select Model Slicer > Add Constraint.
• In the Constraints dialog box, select Port 3.
• Click OK.

11 Model Slicer

11-22

The path is restricted to the Constant1 port on the switch. The blocks that are
upstream of Port 1 and Port 2 of the constrained switch are no longer highlighted.
Only the blocks upstream of Port 3 are highlighted.

 Refine Highlighted Model

11-23

3 To see how this constraint affects the highlighted portion of the model, view the
parent system.

11 Model Slicer

11-24

See Also

More About
• “Create a Simplified Standalone Model” on page 11-33
• “Model Slicer Considerations and Limitations” on page 11-54

 See Also

11-25

Refine Dead Logic for Dependency Analysis
To refine the dead logic in your model for dependency analysis, use the Model Slicer. To
provide an accurate slice, Model Slicer leverages Simulink Design Verifier dead logic
analysis to remove the unreachable paths in the model. Model Slicer identifies the dead
logic and refines the model slice for dependency analysis. For more information on Dead
logic, see “Dead Logic Detection” (Simulink Design Verifier).

Analyze the Dead Logic
This example shows how to refine the model for dead logic. The
sldvSlicerdemo_dead_logic model consists of dead logic paths that you refine for
dependency analysis.

1. Open the sldvSlicerdemo_dead_logic model, and then select Analysis > Model
Slicer.

open_system('sldvSlicerdemo_dead_logic');

11 Model Slicer

11-26

Open the Controller subsystem and add the outport throt as the starting point.

 Refine Dead Logic for Dependency Analysis

11-27

The Model Slicer highlights the upstream dependency of the throt outport.

2. In the Model Slice Manager, select Refine Dead Logic.

3. Click Get Dead Logic Data.

11 Model Slicer

11-28

4. Specify the Analysis time and run the analysis. You can import existing dead logic
results from the sldvData file or load existing .slslicex data for analysis. For more
information, see “Refine Highlighted Model by Using Existing .slslicex or Dead Logic
Results” on page 11-80.

 Refine Dead Logic for Dependency Analysis

11-29

11 Model Slicer

11-30

As the set input is equal to true, the False input to switch is removed for dependency
analysis. Similarly, the output of block OR is always true and removed from the model
slice.

See Also

More About
• “Refine Highlighted Model” on page 11-13

 See Also

11-31

• “Refine Highlighted Model by Using Existing .slslicex or Dead Logic Results” on
page 11-80

11 Model Slicer

11-32

Create a Simplified Standalone Model
You can simplify simulation, debugging, and formal analysis of large and complex models
by focusing on areas of interest in your model. After highlighting a portion of your model
using Model Slicer, you can generate a simplified standalone model incorporating the
highlighted portion of your original model. Apply changes to the simplified standalone
model based on simulation, debugging, and formal analysis, and then apply these changes
back to the original model.

Note Simplified standalone model creation is not supported for highlighted models with
exclusion points or constrained switch blocks. If you want to view the effects of exclusion
points or constrained switch blocks on a simplified standalone model, first create the
simplified standalone model, and then add exclusion points or constrained switch blocks.

1 Highlight a portion of your model using Model Slicer.

See “Highlight Functional Dependencies” on page 11-2 and “Refine Highlighted
Model” on page 11-13.

2 In the Model Slice Manager, click Generate slice.
3 In the Select File to Write dialog box, select the save location and enter a model

name.

The simplified standalone model contains the highlighted model items.
4 To remove highlighting from the model, close the Model Slice Manager.

When generating a simplified standalone model from a model highlight, you might need to
refine the highlighted model before the simplified standalone model can compile. See the
“Model Slicer Considerations and Limitations” on page 11-54 for compilation
considerations.

See Also

More About
• “Configure Model Highlight and Sliced Models” on page 11-50

 Create a Simplified Standalone Model

11-33

Highlight Active Time Intervals by Using Activity-Based
Time Slicing

Stateflow states and transitions can be active, inactive, or sleeping during model
simulation. You can use Model Slicer to constrain model highlighting to only highlight the
time intervals in which certain Stateflow “States” (Stateflow) and “Transitions”
(Stateflow) are active. Therefore, you are able to refine your area of interest to only those
portions of your model that affect model simulation during the operation of the selected
states and transitions. You can also constrain model highlighting to the intersection of the
time intervals of two or more states or transitions.

In this section...
“Highlighting the Active Time Intervals of a Stateflow State or Transition” on page 11-
34
“Activity-Based Time Slicing Limitations and Considerations” on page 11-42
“Stateflow State and Transition Activity” on page 11-42

Highlighting the Active Time Intervals of a Stateflow State or
Transition
The slslicer_fuelsys_activity_slicing model contains a fault-tolerant fuel
control system. In this tutorial, you use activity-based time slicing to refine a model
highlight to only those time intervals in which certain states and transitions are active.
You must be familiar with how to “Highlight Functional Dependencies” on page 11-2 by
using Model Slicer.

Create a Dynamic Slice Highlight for an Area of Interest

1 Add the example folder to the search path.

addpath(fullfile(docroot,'toolbox','simulink','examples'))
2 Open the slslicer_fuelsys_activity_slicing model.

open_system('slslicer_fuelsys_activity_slicing')
3 Open Model Slicer and add the control logic Stateflow chart in the fuel rate

controller subsystem as a Model Slicer starting point.
4 Highlight the portions of the model that are upstream of the control logic

Stateflow chart.

11 Model Slicer

11-34

5 Simulate the model within a restricted simulation time window (maximum 20
seconds) to highlight only the areas of the model upstream of the starting point and
active during the time window of interest.

Constrain the Model Highlight to the Active Time Interval of a Stateflow State

1 On the Apps tab, under Model Verification, Validation, and Test gallery, click
Model Slicer.

2 Navigate to the control logic Stateflow chart in the fuel rate controller
subsystem.
open_system('slslicer_fuelsys_activity_slicing/fuel rate controller/control logic')

3 To constrain the model highlight to only those time intervals in which the
Fueling_Mode > Running > Low_Emissions > Warmup state is active, right-click
the Warmup state and select Model Slicer > Constrain to active time intervals
for “Warmup”.

 Highlight Active Time Intervals by Using Activity-Based Time Slicing

11-35

11 Model Slicer

11-36

Model Slicer is updated to highlight only those portions of the model that are active
during the time intervals in which the warmup state is active.

 Highlight Active Time Intervals by Using Activity-Based Time Slicing

11-37

The Model Slice Manager is also updated to show the time interval in which the
warmup state is active:

Actual simulation time: 0.01 to 3.86 seconds : 1 active interval

The highlight shows a normal to fail transition in the Pressure state, showing
that a pressure failure occurred during the time interval in which the Warmup state
was active.

Constrain the Model Highlight to the Intersection of the Active Time Intervals of
a Stateflow State and Transition

1 Clear any time interval constraints from the Model Slice Manager.
2 Constrain the model highlight to only those time intervals in which the O2 > fail

state is active.

11 Model Slicer

11-38

Model Slicer is updated to highlight only those portions of the model that are active
during the time intervals in which the O2 > fail state is active. The Model Slice

 Highlight Active Time Intervals by Using Activity-Based Time Slicing

11-39

Manager is also updated to show the time interval in which the O2 > fail state is
active:

Actual simulation time: 4.83 to 20 seconds : 1 active interval
3 To constrain the highlighting to the time interval in which the O2 > fail state is

active and the normal to fail transition occurs for the Throttle chart, right-click
the normal to fail transition and add it as a constraint. Model Slicer is updated to
highlight only those portions of the model that are active during the intersection of
the time intervals in which the O2 > fail state is active and the normal to fail
transition occurs for the Throttle chart.

11 Model Slicer

11-40

The Model Slice Manager is also updated to show the time interval in which the O2 >
fail state is active and the normal to fail transition occurs for the Throttle chart:

 Highlight Active Time Intervals by Using Activity-Based Time Slicing

11-41

Actual simulation time: 13.87 to 13.87 seconds : 1 active interval

Activity-Based Time Slicing Limitations and Considerations
For limitations and considerations of activity-based time slicing, see “Model Slicer
Considerations and Limitations” on page 11-54.

Stateflow State and Transition Activity
For more information on Stateflow state and transition activity, see “Chart Simulation
Semantics” (Stateflow), “Types of Chart Execution” (Stateflow), and “Syntax for States
and Transitions” (Stateflow).

See Also

More About
• “Using Model Slicer with Stateflow” on page 11-63
• “States” (Stateflow)
• “Transitions” (Stateflow)

11 Model Slicer

11-42

Simplify a Standalone Model by Inlining Content
You can reduce file dependencies by inlining model content when you generate the sliced
model. Inlining brings functional content into the sliced model and can eliminate model
references, library links, and variant structures that are often not needed for model
refinement or debugging.

If you want to disable inlining for certain block types, open the Model Slice Manager and

click the options button . Select only the block types for which you want to inline
content. For information on block-specific inlining behavior, see “Inline Content Options”
on page 11-52.

This example demonstrates inlining content of a model referenced by a Model block.

1 Add the path to the example and open the model

addpath(fullfile(docroot,'toolbox','simulink','examples'))
open_system('sldvSliceEngineDynamicsExample')

2 On the Apps tab, under Model Verification, Validation, and Test gallery, click
Model Slicer.

3 In the model, right-click the MAP outport and select Model Slicer > Add as
Starting Point. The path is highlighted through the Model block.

 Simplify a Standalone Model by Inlining Content

11-43

4 Create a sliced model from the highlight. In the Model Slice Manager, click the
Generate slice button.

5 Enter a file name for the sliced model.
6 The sliced model contains the highlighted model content. The model reference is

removed.

11 Model Slicer

11-44

7 Click the arrow to look under the mask of the ThrottleAndManifold subsystem. The
content from the referenced model is inlined into the model in the masked
subsystem.

 Simplify a Standalone Model by Inlining Content

11-45

11 Model Slicer

11-46

Workflow for Dependency Analysis
In this section...
“Dependency Analysis Workflow” on page 11-47
“Dependency Analysis Objectives” on page 11-48

Model analysis includes determining dependencies of blocks, signals, and model
components. For example, to view blocks affecting a subsystem output, or trace a signal
path through multiple switches and logic. Determining dependencies can be a lengthy
process, particularly for large or complex models. Use Model Slicer as a simple way to
understand functional dependencies in large or complex models. You can also use Model
Slicer to create simplified standalone models that are easier to understand and analyze,
yet retain their original context.

Dependency Analysis Workflow
The dependency analysis workflow identifies the area of interest in your model, generates
a sliced model, revises the sliced model, and incorporates those revisions in the main
model.

 Workflow for Dependency Analysis

11-47

Dependency Analysis Objectives
To identify the area of interest in your model, determine objectives such as:

• What item or items are you analyzing? Analysis begins with at least one starting point.
• In what direction does the analysis propagate? The dependency analysis propagates

upstream, downstream, or bidirectionally from the starting points.
• What model items or paths do you want to exclude from analysis?
• What paths do you want to constrain? If your model has switches, you can constrain

the switch positions for analysis.
• Is your model a closed-loop system? If so, the highlighted portion of the model can

include model dependencies from the feedback loop. Consider excluding blocks from
the feedback loop to refine the highlighted portion of the model.

• Do you want to analyze static dependencies, or include simulation effects? Static
analysis considers model dependencies for possible simulation paths. Simulation-based
analysis highlights only paths active during simulation.

11 Model Slicer

11-48

See Also

Related Examples
• “Highlight Functional Dependencies” on page 11-2
• “Refine Highlighted Model” on page 11-13
• “Create a Simplified Standalone Model” on page 11-33

 See Also

11-49

Configure Model Highlight and Sliced Models
In this section...
“Model Slice Manager” on page 11-50
“Model Slicer Options” on page 11-50
“Storage Options” on page 11-50
“Refresh Highlighting Automatically” on page 11-51
“Sliced Model Options” on page 11-51
“Trivial Subsystems” on page 11-52
“Inline Content Options” on page 11-52

Model Slice Manager
Set the properties of your model highlight and standalone sliced model using the Model
Slice Manager.

Click the toggle mode button to switch between model edit mode and model
highlight mode.

If automatic highlighting is disabled in the slice settings, refresh the model highlight

using the refresh button . Refresh the highlight after changing the slice
configuration.

Model Slicer Options
You can customize the slice behavior using the options dialog box, which is accessed with

the options button .

Storage Options
Changes you make to a model slice configuration are saved automatically. You can store
the slice configuration in the model SLX file, or in an external SLMS file. Saving the

11 Model Slicer

11-50

configuration externally can be useful if your SLX file is restricted by a change control
system.

To set the storage location, click the options button in the Model Slice Manager and
set the location in the Storage options pane.

Settings

Store in <model_name>.slx
Saves the model slice configuration in your model’s SLX file

Store in external file
Saves the model slice configuration in a separate SLMS file you specify by clicking
the Save As button. The model slice configuration filename is shown in File.

Refresh Highlighting Automatically
Enables automatic refresh of a model highlight after changing the slice configuration.

Settings

on (default)
Model highlighting refreshes automatically.

off

Model highlighting must be refreshed manually. Click the refresh button in the
Model Slice Manager to refresh the highlight.

Sliced Model Options
You can control what items are retained when you create a sliced model from a model
highlight using the options in the Sliced model options pane.

 Configure Model Highlight and Sliced Models

11-51

Option On (selected) Off (cleared)
Retain signal
observers

Signal observers, such as
scopes, displays, and test
condition blocks, are
retained in the sliced model.

Signal observers are not retained in
the sliced model (default).

Retain root-level
inports and
outports

Root-level ports are retained
in the sliced model (default).

Root-level ports are not retained in
the sliced model.

Expand trivial
subsystems

Trivial subsystems are
expanded in the sliced model
and the subsystem boundary
is removed (default).

Trivial subsystems are not expanded
in the sliced model and the subsystem
boundary is retained. See“Trivial
Subsystems” on page 11-52.

Trivial Subsystems
If a subsystem has all of these characteristics, Model Slicer considers the subsystem
trivial:

• If the subsystem is virtual, it contains three or fewer nonvirtual blocks.
• If the subsystem is atomic, it contains one or fewer nonvirtual blocks.
• The subsystem has two or fewer inports.
• The subsystem has two or fewer outports.
• The active inport or outport blocks of the subsystem have default block parameters.
• The system does not contain Goto Tag Visibility blocks.
• In the Block Properties dialog box, the subsystem Priority is empty.
• The data type override parameter (if applicable) is set to use local settings.

Note If you generate a sliced model which does not remove contents of a particular
subsystem, the subsystem remains intact in the sliced model.

Inline Content Options
When you create a sliced model from a highlight, model items can be inlined into the
sliced model. The Inline content options pane controls which model components are
inlined in generating a sliced model.

11 Model Slicer

11-52

Model
Component

Inlining on (selected) Inlining off (cleared)

Libraries Model items inside sliced
libraries are inlined in the
sliced model and the library
link is removed. (default)

Model items inside sliced libraries are
not inlined in the sliced model and
library link remains in place.

Masked
subsystems

Model items inside sliced
masked subsystems are
inlined in the sliced model.
(default)

The mask is retained in the
sliced model.

Model items inside sliced masked
subsystems are not inlined in the sliced
model and the mask is retained.

Model blocks Model items are inlined to
the sliced model from the
model referenced by the
Model block. The Model
block is removed. (default)

Note Model Slicer cannot
inline model blocks that are
not in Normal mode.

Model items are not inlined to the sliced
model from the model referenced by the
Model block. The Model block is
retained.

Variants Model items are inlined to
the sliced model from the
active variant. Variants are
removed. (default)

Model items are not inlined to the sliced
model from the variant. The variant is
retained.

See Also

Related Examples
• “Highlight Functional Dependencies” on page 11-2
• “Refine Highlighted Model” on page 11-13
• “Simplify a Standalone Model by Inlining Content” on page 11-43

 See Also

11-53

Model Slicer Considerations and Limitations
When you work with the Model Slicer, consider these behaviors and limitations:

In this section...
“Model Compilation” on page 11-54
“Model Highlighting and Model Editing” on page 11-54
“Standalone Sliced Model Generation” on page 11-54
“Sliced Model Considerations” on page 11-55
“Port Attribute Considerations” on page 11-55
“Simulation Time Window Considerations” on page 11-56
“Simulation-based Sliced Model Simplifications” on page 11-57
“Starting Points Not Supported” on page 11-58
“Model Slicer Support Limitations for Simulink Software Features” on page 11-58
“Model Slicer Support Limitations for Simulation Stepper” on page 11-59
“Model Slicer Support Limitations for Simulink Blocks” on page 11-59
“Model Slicer Support Limitations for Stateflow” on page 11-60

Model Compilation
When you open Model Slice Manager, the model is compiled. To avoid a compilation error,
before you open Model Slice Manager, make sure that the model is compilable.

Model Highlighting and Model Editing
When a slice highlight is active, you cannot edit the model. You can switch to model edit
mode and preserve the highlights. When you switch back to slice mode, the slice
configuration is recomputed and the highlight is updated.

Standalone Sliced Model Generation
Sliced model generation requires one or more starting points for highlighting your model.
Sliced model generation is not supported for:

11 Model Slicer

11-54

• Forward-propagating (including bidirectional) dependencies
• Constraints
• Exclusion points

Sliced model generation requires a writable working folder in MATLAB.

Sliced Model Considerations
When you generate a sliced model from a model highlight, simplifying your model can
change simulation behavior or prevent the sliced model from compiling. For example:

• Model simplification can change the sorted execution order in a sliced model
compared to the original model, which can affect the sliced model simulation behavior.

• If you generate a sliced model containing a bus, but not the source signal of that bus,
the sliced model can contain unresolved bus elements.

• If you generate a sliced model that inlines a subset of the contents of a masked block,
make sure that the subsystem contents resolve to the mask parameters. If the contents
and mask do not resolve, it is possible that the sliced model does not compile.

• If the source model uses a bus signal, ensure that the sliced model signals are
initialized correctly. Before you create the sliced model, consider including an explicit
copy of the bus signal in the source model. For example, you can include a Signal
Conversion block with the Output option set to Signal Copy.

• For solver step sizes set to auto, Simulink calculates the maximum time step in part
based on the blocks in the model. If the sliced model removes blocks that affect the
time step determination, the time step of the sliced model can differ from the source
model. The time step difference can cause simulation differences. Consider setting
step sizes explicitly to the same values calculated in the source model.

Port Attribute Considerations
You can use blocks that the Model Slicer removes during model simplification to
determine compiled attributes, such as inherited sample times, signal dimensions, and
data types. The Model Slicer can change sliced model port attributes during model
simplification to resolve underspecified model port attributes. If the Model Slicer cannot
resolve these inconsistencies, you can resolve some model port attribute inconsistencies
by:

• Explicitly specifying attributes in the source model instead of relying on propagation
rules.

 Model Slicer Considerations and Limitations

11-55

• Including in the sliced model the blocks that are responsible for the attribute
propagation in your source model. Before you slice the model, add these blocks as
additional starting points in the source model highlighting.

• Not inlining the model blocks that are responsible for model port attributes into the
sliced model. For more information on model items that you can inline into the sliced
model, see “Inline Content Options” on page 11-52.

Because of the way Simulink handles model references, you cannot simultaneously
compile two models that both contain a model reference to the same model. When you
generate a sliced model, the Model Slicer enters the Slicer Locked (for attribute
checking) mode if these conditions are true:

• The parent model contains a referenced model.
• The highlighted portion of the parent model contains the referenced model.
• The referenced model is not inlined in the sliced model due to one of the following

• You choose not to inline model blocks in the Inline content options pane of the
Model Slicer options.

• The Model Slicer cannot inline the referenced model. For more information on
model items that Model Slicer cannot inline, see “Inline Content Options” on page
11-52.

To continue refining the highlighted portion of the parent model, you must first activate

the slice highlight mode .

Simulation Time Window Considerations
Depending on the step size of your model and the values that you enter for the start time
and stop time of the simulation time window, Model Slicer might alter the actual
simulation start time and stop time.

• If you enter a stop or start time that falls between time steps for your model solver, the
Model Slicer instead uses a stop or start time that matches the time step previous to
the value that you entered. For more information on step sizes in Simulink, see
“Compare Solvers” (Simulink).

• The stop time for the simulation time window cannot be greater than the total
simulation time.

11 Model Slicer

11-56

Simulation-based Sliced Model Simplifications
When you slice a model by using a simulation time window, some blocks in the source
model, such as switch blocks, logical operator blocks, and others, can be replaced when
creating the simplified standalone model. For example, a switch block that always passes
one input is removed, and the active input is directly connected to the output destination.
The unused input signal is also removed from the standalone model.

This table describes the blocks that the Model Slicer can replace during model
simplification.

Block in Source Model Simplification
Switch

Multiport Switch

If only one input port is active, the switch is
replaced by a signal connecting the active
input to the block output.

Enabled Subsystem or Model If the subsystem or model is always
enabled, remove the control input and
convert to a standard subsystem or model.

If the subsystem is never enabled, replace
the subsystem with a constant value
defined by the initial condition.

Triggered Subsystem or Model If the subsystem or model is always
triggered, remove the trigger input and
convert to a standard subsystem or model.

If the subsystem is never triggered, replace
the subsystem with a constant value
defined by the initial condition.

Enabled and Triggered Subsystem or Model If the subsystem is always executed,
convert to a standard subsystem or model

If the subsystem is never executed, replace
the subsystem with a constant value
defined by the initial condition.

Merge If only one input port is active, the merge is
replaced by a signal connecting the active
input to the block output.

 Model Slicer Considerations and Limitations

11-57

Block in Source Model Simplification
If

If Action

If only one action subsystem is active,
convert to a standard subsystem or model
and remove the If block.

Switch Case

Switch Case Action

If only one action subsystem is active,
convert to a standard subsystem or model
and remove the Switch Case block.

Logical operator Replace with constant when the block
always outputs true or always outputs false.

Replace the input signal with a constant if
the input signal is always true or always
false.

Starting Points Not Supported
The Model Slicer does not support these model items as starting points:

• Virtual blocks, other than subsystem Inport and Outport blocks
• Output signals from virtual blocks that are not subsystems

Model Slicer Support Limitations for Simulink Software
Features
The Model Slicer does not support these features:

• Arrays of buses
• Analysis of Simulink Test test harnesses
• Models that contain Simscape physical modeling blocks
• Models that contain algebraic loops
• Loading initial states from the source model for sliced model generation, such as data

import/export entries. Define initial states explicitly for the sliced model in the sliced
model configuration parameters.

• Component slicing of the subsystems and referenced models that have multiple rates.
• Component slicing of the “Conditional Models” (Simulink) and Conditionally Executed

Subsystems (Simulink).

11 Model Slicer

11-58

Model Slicer Support Limitations for Simulation Stepper
When using Model Slicer with Simulation Stepper, the slice highlight after a Step Back
may not be limited to a single step. The highlight can be influenced by the Simulation
Stepping Options > Interval between stored back steps. For more information, see
“Interval between stored back steps” (Simulink).

Model Slicer Support Limitations for Simulink Blocks
The table lists the Model Slicer support limitations for Simulink Blocks.

Block Limitation
For Each Subsystem block The simulation impact is ignored for blocks in a For Each

subsystem. Therefore, applying a simulation time window
returns the same dependency analysis result as a
dependency analysis that does not use a simulation time
window.

Function Caller block Model Slicer does not support Function Caller blocks.
MATLAB Function block Model Slicer assumes that any output depends on all

inputs in the upstream direction and any input affects all
outputs in the downstream direction.

Merge block If you generate a slice by using a simulation time window,
Merge blocks are removed in the standalone model if only
a single path is exercised.

 Model Slicer Considerations and Limitations

11-59

Block Limitation
Model block Model Slicer does not support multiple instances of the

same Model block with its Simulation mode set to
Normal.

Model Slicer does not resolve data dependencies
generated by global data store memory in Model blocks
with Simulation mode set to Accelerator.

Model Slicer does not support function-call root-level
Inport blocks. For more information, see Export-Function
Models (Simulink).

Model Slicer does not analyze the contents within a
reference to a “Reference Protected Models from Third
Parties” (Simulink). When you slice a model that contains a
protected model reference, the Model Slicer includes the
entire model reference in the sliced model.

Resettable Subsystem block Model Slicer does not support Resettable Subsystem
blocks.

S-function block Model Slicer assumes that any output depends on all
inputs in the upstream direction and any input affects all
outputs in the downstream direction.

Model Slicer does not determine dependencies that result
from an S-function block accessing model information
dependent on a simulation time window.

State Read block Model Slicer does not support State Read blocks.
State Write block Model Slicer does not support State Write blocks.

Model Slicer Support Limitations for Stateflow
• When you highlight models containing a Stateflow chart or state transition table,

Model Slicer assumes that any output from the Chart block or State Transition Table
block depends on all inputs to the Chart block or State Transition Table block.

• When you slice a model with a Stateflow chart or a state transition table, Model Slicer
does not simplify the chart or table. The chart or table is included in its entirety in the
sliced model.

11 Model Slicer

11-60

• If you do not “Define a Simulation Time Window” on page 11-13 when you highlight
functional dependencies in a Stateflow chart or state transition table, Model Slicer
assumes that all elements of the chart or table are active. Model Slicer highlights the
entire contents of such charts and tables.

• When you highlight functional dependencies in a Stateflow chart or state transition
table for a defined simulation time window, Model Slicer does not highlight only the
states and transitions that affect the selected starting point. Instead, the Model Slicer
highlights elements that are active in the time window that you specify.

• The Model Slicer does not determine dependencies between Stateflow graphical
functions and function calls in other Stateflow charts.

• Graphical functions and their contents that were not active during the selected time
window can potentially remain highlighted in some cases.

• Entry into states that are preempted due to events can potentially remain highlighted
in some cases. For example, after a parent state is entered, an event action can exit
the state and preempt entry into the child state. In such a case, the Model Slicer
highlights the entry into the child state.

• The Model Slicer does not support:

• Embedded MATLAB Function blocks
• Simulink functions
• Truth Table blocks
• Machine-parented data or events in Stateflow.

.

Activity-Based Time Slicing Considerations for Stateflow

As measured by the 'Executed Substate' decision coverage, state activity refers to these
during/exit actions:

• Entry into a state does not constitute activity.
• The active time interval for a state or transition includes the moment in which the

selected state exits and the subsequent state is entered.
• Indirect exits from a state or transition do not constitute activity. For example, if a

state C exits because its parent state P exits, state C is not considered active.

For more information on decision coverage for Stateflow charts, see “Decision Coverage
for Stateflow Charts” (Simulink Coverage).

 Model Slicer Considerations and Limitations

11-61

When you “Highlight Active Time Intervals by Using Activity-Based Time Slicing” on page
11-34, you can select states and transitions only as activity constraints. You cannot select
these Stateflow objects as constraints:

• Parallel states
• Transitions without conditions, such as unlabeled transitions which do not receive

decision coverage
• States or transitions within library-linked charts
• XOR states without siblings. For example, if a state P has only one child state C, you

cannot select state C as an activity constraints because state P does not receive
decision coverage for the executed substate

See Also
“Algebraic Loop Concepts” (Simulink) | “Solver Pane” (Simulink)

11 Model Slicer

11-62

Using Model Slicer with Stateflow

In this section...
“Model Slicer Highlighting Behavior for Stateflow Elements” on page 11-63
“Using Model Slicer with Stateflow State Transition Tables” on page 11-64
“Support Limitations for Using Model Slicer with Stateflow” on page 11-64

You can use Model Slicer highlighting to visually verify the logic in your Stateflow charts
or tables. After you “Define a Simulation Time Window” on page 11-13, you use Model
Slicer to highlight and slice Stateflow elements that are active within the selected time
window.

Note If you do not “Define a Simulation Time Window” on page 11-13 when you highlight
functional dependencies in a Stateflow chart or table, Model Slicer assumes that all
elements of the chart or table are active. Model Slicer highlights the entire contents of
such charts and tables.

In this section...
“Model Slicer Highlighting Behavior for Stateflow Elements” on page 11-63
“Using Model Slicer with Stateflow State Transition Tables” on page 11-64
“Support Limitations for Using Model Slicer with Stateflow” on page 11-64

Model Slicer Highlighting Behavior for Stateflow Elements
Model Slicer highlights a Stateflow element if it was executed in the specified time
window. Some examples include:

• A chart, if it is activated in the specified a time window.
• A state, if its entry, exit, or during actions are executed in the specified a time window.
• A parent state, if its child state is highlighted in the specified a time window.
• A transition, if it is taken in the specified time window, such as inner, outer, and

default. If the conditions of a transition are evaluated, but the transition is not taken,
Model Slicer does not highlight the transition.

 Using Model Slicer with Stateflow

11-63

Using Model Slicer with Stateflow State Transition Tables
Model Slicer does not directly highlight the contents of Stateflow state transition tables.
To view highlighted functional dependencies in a state transition table, you must view the
auto-generated diagram for the state transition table. For instructions on how to view the
auto-generated diagram for the state transition table, see “Generate Diagrams from State
Transition Tables” (Stateflow).

Support Limitations for Using Model Slicer with Stateflow
For support limitations when you use Model Slicer with Stateflow, see “Model Slicer
Support Limitations for Stateflow” on page 11-60.

See Also

More About
• “Highlight Functional Dependencies” on page 11-2
• “Refine Highlighted Model” on page 11-13
• “Chart Simulation Semantics” (Stateflow)

11 Model Slicer

11-64

Isolating Dependencies of an Actuator Subsystem
This example demonstrates highlighting model items that a subsystem depends on. It also
demonstrates generating a standalone model slice from the model highlight.

In this section...
“Choose Starting Points and Direction” on page 11-65
“View Precedents and Generate Model Slice” on page 11-67

Choose Starting Points and Direction
1 Open the f14 example model.

f14
2 On the Apps tab, under Model Verification, Validation, and Test gallery, click

Model Slicer.

 Isolating Dependencies of an Actuator Subsystem

11-65

3 In the Model Slice Manager, click the arrow to expand the Slice configuration list
list. Set the slice properties:

• Name: Actuator_slice
• To the right of Name, click the colored square to set the highlight color. Choose

magenta from the palette.
• Signal Propagation: upstream.

4 Add the Actuator Model subsystem as a starting point. In the model, right-click the
Actuator Model subsystem and select Model Slicer > Add as Starting Point.

11 Model Slicer

11-66

View Precedents and Generate Model Slice
1 The model highlights the upstream dependencies of the Actuator Model

subsystem.

 Isolating Dependencies of an Actuator Subsystem

11-67

Trace the following dependency path. Aircraft Dynamics Model is highlighted
via the Pitch Rate q signal, which is an input to Controller, the output of which
feeds Actuator Model.

2 Generate a standalone model containing the highlighted model items:

a In the Model Slice Manager, click Generate slice.
b In the Select File to Write dialog box, select the save location and enter

actuator_slice_model.
c Click Save.

3 The sliced model contains the highlighted model items.

11 Model Slicer

11-68

4 To remove highlighting from the model, close the Model Slice Manager.

 Isolating Dependencies of an Actuator Subsystem

11-69

Isolate Model Components for Functional Testing
You can create a standalone model for the model designed using “Design Model
Architecture” (Simulink). The model slice isolates the model components and relevant
signals for debugging and refinement.

Isolate Subsystems for Functional Testing
To debug and refine a subsystem of your model, create a standalone model. The
standalone model isolates the subsystem and relevant signals. You can observe the
subsystem behavior without simulating the entire source model.

Note You cannot slice virtual subsystems. To isolate a virtual subsystem, first convert it
to an atomic subsystem.

Isolate a Subsystem with Simulation-Based Inputs

To observe the simulation behavior of a subsystem, include logged signal inputs in the
standalone model. When you configure the model slice, specify a simulation time window.
For large models, observing subsystem behavior in a separate model can save time
compared to compiling and running the entire source model.

This example shows how to include simulation effects for the Controller subsystem of a
cruise control system.

11 Model Slicer

11-70

1 To open the Model Slice Manager, select Analysis > Model Slicer.
2 To select the starting point for dependency analysis, right-click a block, signal, or a

port, and select Model Slicer > Add as Starting point.
3 To isolate the subsystem in the sliced model, right-click the subsystem, and select

Model Slicer > Slice component.

In the example model, selecting Slice component for the Controller subsystem
limits the dependency analysis to the path between the starting point (the throttle
outport) and the Controller subsystem.

 Isolate Model Components for Functional Testing

11-71

4 To specify the simulation time window:

a In the Model Slice Manager, select Simulation time window.
b

Click the run simulation button .
c Enter the simulation stop time, and click OK.

11 Model Slicer

11-72

The Model slicer analyzes the model dependencies for the simulation interval.
5 To extract the subsystem and logged signals, click Generate slice. Enter a file name

for the sliced model.

Based on the dependency analysis, a Signal Builder block supplies the signal inputs
to the subsystem.

In the sliced model shown, the sliced model Signal Builder block contains one test
case representing the signal inputs to the Controller subsystem for simulation time 0–
45 seconds.

 Isolate Model Components for Functional Testing

11-73

Isolate Referenced Model for Functional Testing
To functionally test a referenced model, you can create a slice of a referenced model
treating it as an open-loop model. You can isolate the simplified open-loop referenced
model with the inputs generated by simulating the close-loop system.

This example shows how to slice the referenced model controller of a fault-tolerant fuel
control system for functional testing. To create a simplified open-loop referenced model
for debugging and refinement, you generate a slice of the referenced controller.

Step 1: Open the Model

The fault-tolerant fuel control system model contains a referenced model controller
fuel_rate_control.

open_system('sldvSlicerdemo_fuelsys');

11 Model Slicer

11-74

Step 2: Slice the Referenced Model

To analyze the fuel_rate_control referenced model, you slice it to create a standalone
open-loop model. To open the Model Slice Manager, select Apps > Model Verification,
Validation, and Test > Model Slicer, or right-click the fuel_rate_control model
and select Model Slicer > Slice component. When you open the Model Slice Manager,
the Model Slicer compiles the model. You then configure the model slice properties.

Note: The simulation mode of the sldvSlicerdemo_fuelsys model is Accelerator
mode. When you slice the referenced model, the software configures the simulation mode
to Normal mode and sets it back to its original simulation mode while exiting the Model
Slicer.

Step 3: Select Starting Point

Open the fuel_rate_control model, right-click the fuel-rate port, and select Model
Slicer > Add as starting point. The Model Slicer highlights the upstream constructs
that affect the fuel_rate.

 Isolate Model Components for Functional Testing

11-75

Step 4: Generate Slice

a. In the Model Slice Manager dialog box, select the Simulation time window.

b. Click Run simulation.

c. For the Stop time, enter 20. Click OK.

d. Click Generate Slice. The software simulates the sliced referenced model by using the
inputs of the close-loop sldvSlicerdemo_fuelsys model.

11 Model Slicer

11-76

 Isolate Model Components for Functional Testing

11-77

For the sliced model, in the Signal Builder window, one test case is displayed that
represents the signals input to the referenced model for simulation time 0–20 seconds.

11 Model Slicer

11-78

See Also
“Model Slicer Considerations and Limitations” on page 11-54 | “Highlight Functional
Dependencies” on page 11-2

 See Also

11-79

Refine Highlighted Model by Using Existing .slslicex or
Dead Logic Results

When you run simulation or refine dead logic, Model Slicer saves your simulation results
at the default location <current_folder>\modelslicer\<model_name>
\<model_name>.slslicex. For large or complex models, the simulation time can be
lengthy. To refine the highlighted slice, you can use the existing Model Slicer simulation
data or dead logic results.

If you want to highlight functional dependencies in the model again at another time, you
can use the existing.slslicex simulation time window data without needing to
resimulate the model. Model Slicer then uses the existing simulation data to highlight the
model.

1 Open the Simulink model.
2 To open the Model Slice Manager, select Analysis > Model Slicer.
3 Select Simulation time window.
4

Click Use existing simulation data .
5 Navigate to the existing .slslicex data and click Open.

To refine the dead logic for dependency analysis, you can import the existing Simulink
Design Verifier data file or use the existing .slslicex dead logic results. For more
information see, “Dead Logic Detection” (Simulink Design Verifier) and “Simulink Design
Verifier Data Files” (Simulink Design Verifier).

1 In Model Slice Manager, select Refine Dead Logic and click Get Dead Logic Data.
2 To import the Simulink Design Verifier data file, click Browse for SLDV data file

.

To load the existing dead logic results, click Browse for existing dead logic results

.
3 Navigate to the existing data and click Open.

11 Model Slicer

11-80

 Refine Highlighted Model by Using Existing .slslicex or Dead Logic Results

11-81

See Also

More About
• “Highlight Functional Dependencies” on page 11-2
• “Configure Model Highlight and Sliced Models” on page 11-50
• “Refine Dead Logic for Dependency Analysis” on page 11-26

11 Model Slicer

11-82

Simplification of Variant Systems
In this section...
“Use the Variant Reducer to Simplify Variant Systems” on page 11-83
“Use Model Slicer to Simplify Variant Systems” on page 11-83

If your model contains “Variant Systems” (Simulink), you can reduce the model to a
simplified, standalone model containing only selected variant configurations.

Use the Variant Reducer to Simplify Variant Systems
After you Add and Validate Variant Configurations (Simulink), you can reduce the model
from the Variant Manager:

1 Open a model containing at least one valid variant configuration.
2 Select View >> Variant Manager, or right-click a variant system and select Variant

>> Open in Variant Manager.
3 Click Reduce model....
4 Select one or more variant configurations.
5 Set the Output directory.
6 Click Reduce to create a simplified, standalone model containing only the selected

variant configurations.

The Variant Reducer creates a simplified, standalone model in the output directory you
specified containing only the variant configurations you selected. For more information,
see “Reduce Models Containing Variant Blocks” (Simulink).

Use Model Slicer to Simplify Variant Systems
After you Add and Validate Variant Configurations (Simulink), you can use Model Slicer to
create a simplified, standalone model containing only the active variant configuration.
When you “Highlight Functional Dependencies” on page 11-2 in a model containing
variant systems, only active variant choices are highlighted. When you “Create a
Simplified Standalone Model” on page 11-33 from a model highlight that includes variant
systems, Model Slicer removes the variant systems and replaces them with the active
variant configurations.

 Simplification of Variant Systems

11-83

For instructions on how to change the active variant configuration and how to set default
variant choices, see “Working with Variant Choices” (Simulink).

See Also

More About
• “Create a Simple Variant Model” (Simulink)
• “Define, Configure, and Activate Variants” (Simulink)
• “Introduction to Variant Controls” (Simulink)
• “Reduce Models Containing Variant Blocks” (Simulink)

11 Model Slicer

11-84

Programmatically Resolve Unexpected Behavior in a
Model with Model Slicer

In this example, you evaluate a Simulink model, detect unexpected behavior, and use
Model Slicer to programmatically isolate and resolve the unexpected behavior. When you
plan to reuse your API commands and extend their use to other models, a programmatic
approach is useful.

Prerequisites
Be familiar with the behavior and purpose of Model Slicer and the functionality of the
Model Slicer API. “Highlight Functional Dependencies” on page 11-2 outlines how to use
Model Slicer user interface to explore models. The slslicer, slsliceroptions, and
slslicertrace function reference pages contain the Model Slicer API command help.

Find the Area of the Model Responsible for Unexpected
Behavior
The sldvSliceCruiseControlHarness test harness model contains a cruise controller
subsystem sldvSliceCruiseControl and a block, TestCases, containing a test case
for this subsystem. You first simulate the model to execute the test case. You then
evaluate the behavior of the model to find and isolate areas of the model responsible for
unexpected behavior:

1 Open the sldvSliceCruiseControlHarness test harness for the cruise control
model.

open_system('sldvSliceCruiseControlHarness')

 Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

11-85

Note The Assertion block is set to Stop simulation when assertion fails when the
actual operation mode is not the same as the expected operation mode.

The TestCases block contains several test inputs for sldvSliceCruiseControl.
2

In the TestCases Signal Builder click the Run all button to run all of the included
test cases. You receive an error during the ResumeWO test case.

11 Model Slicer

11-86

The Assertion block halted simulation at 27 seconds, because the actual operation
mode was not the same as the expected operation mode. Click OK to close this error
message.

3 In the sldvSliceCruiseControlHarness model, double-click the Assertion block, clear
Enable assertion, and click OK.

set_param('sldvSliceCruiseControlHarness/Assertion','Enabled','off')
4 Set the Active Group of the TestCases Signal Builder block to the test case

containing the error and run the simulation again.
signalbuilder('sldvSliceCruiseControlHarness/TestCases', 'ACTIVEGROUP', 12)
sim('sldvSliceCruiseControlHarness')

The Scope block in the model contains three signals:

• operation_mode – displays the actual operation mode of the subsystem.
• expected_mode – displays the expected operation mode of the subsystem that

the test case provides.
• verify – displays a Boolean value comparing the operation mode and the

expected mode.

 Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

11-87

The scope shows a disparity between the expected operation mode and the actual
operation mode beginning at time 27. Now that you know the outport displaying the
unexpected behavior and the time window containing the unexpected behavior, use
Model Slicer to isolate and analyze the unexpected behavior.

11 Model Slicer

11-88

Isolate the Area of the Model Responsible for Unexpected
Behavior
1 Create a Model Slicer configuration object for the model using slslicer. The

Command Window displays the slice properties for this Model Slicer configuration.

obj = slslicer('sldvSliceCruiseControlHarness')

obj =

 SLSlicer with properties:

 Configuration: [1x1 SLSlicerAPI.SLSlicerConfig]
 ActiveConfig: 1
 DisplayedConfig: []
 StorageOptions: [1x1 struct]
 AnalysisOptions: [1x1 struct]
 SliceOptions: [1x1 struct]
 InlineOptions: [1x1 struct]

 Contents of active configuration:
 Name: 'untitled'
 Description: ''
 Color: [0 1 1]
 SignalPropagation: 'upstream'
 StartingPoint: [1x0 struct]
 ExclusionPoint: [1x0 struct]
 Constraint: [1x0 struct]
 SliceComponent: [1x0 struct]
 UseTimeWindow: 0
 CoverageFile: ''
 UseDeadLogic: 0
 DeadLogicFile: ''

2 Activate the slice highlighting mode of Model Slicer to compile the model and
prepare it for dependency analysis.

activate(obj)
3 Add the operation_mode outport block as a starting point and highlight it.

addStartingPoint(obj,'sldvSliceCruiseControlHarness/operation_mode')
highlight(obj)

 Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

11-89

The area of the model upstream of the starting point and active during simulation is
highlighted.

4 Simulate the model within a restricted simulation time window (maximum 30
seconds) to highlight only the area of the model upstream of the starting point and
active during the time window of interest.

simulate(obj,0,30)

Only the portion of the model upstream of the starting point and active during the
simulation time window is highlighted.

11 Model Slicer

11-90

5 You can further narrow the simulation time window by changing the start time to 20
seconds.

setTimeWindow(obj,20,30)

 Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

11-91

6 Create a sliced model sldvSliceCruiseControlHarness_sliced containing only
the area of interest.

slicedModel = slice(obj,'sldvSliceCruiseControlHarness_sliced')
open_system('sldvSliceCruiseControlHarness_sliced')

11 Model Slicer

11-92

The sliced model sldvSliceCruiseControlHarness_sliced now contains a
simplified version of the source model sldvSliceCruiseControlHarness. The
simplified standalone model contains only those parts of the model that are upstream of
the specified starting point and active during the time window of interest.

Investigate the Sliced Model and Debug the Source Model
You can now debug the unexpected behavior in the simplified standalone model and then
apply changes to the source model.

1 To enable editing the model again, terminate the Model Slicer mode.

terminate(obj)
2 Navigate to the area of the sliced model that contains the unexpected behavior.

open_system('sldvSliceCruiseControlHarness_sliced/Model/CruiseControlMode/opMode/resumeCondition/hasCanceled')

 Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

11-93

The AND Logical Operator block in this subsystem has a truncated true constant
attached to its second input port. This true constant indicates that the second input
port is always true during the restricted time window for this sliced model, causing
the cruise control system not to enter the "has canceled" state.

3 Navigate to the equivalent AND Logical Operator block in the source system by using
slslicertrace to view the blocks connected to the second input port.
h = slslicertrace('SOURCE',...
 'sldvSliceCruiseControlHarness_sliced/Model/CruiseControlMode/opMode/resumeCondition/hasCanceled/LogicOp1')
hilite_system(h)

11 Model Slicer

11-94

The OR Logical Operator block in this subsystem is always true in the current
configuration. Changing the OR Logical Operator block to an AND Logical Operator
block rectifies this error.

4 Before making edits, create new copies of the cruise control model and the test
harness model.

save_system('sldvSliceCruiseControl','sldvSliceCruiseControl_fixed')
save_system('sldvSliceCruiseControlHarness','sldvSliceCruiseControlHarness_fixed')

5 Update the model reference in the test harness to refer to the newly saved model.

set_param('sldvSliceCruiseControlHarness_fixed/Model',...
'ModelNameDialog','sldvSliceCruiseControl_fixed.slx')

6 Use the block path of the erroneous Logical Operator block to fix the error.

set_param('sldvSliceCruiseControl_fixed/CruiseControlMode/opMode/resumeCondition/hasCanceled/LogicOp2',..
'LogicOp','AND')

 Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

11-95

7 Simulate the test harness for 45 seconds with the fixed model to confirm the
corrected behavior.

sim('sldvSliceCruiseControlHarness_fixed')

ans =

 Simulink.SimulationOutput:

 tout: [4501x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

11 Model Slicer

11-96

The scope now shows that the expected operation mode is the same as the actual
operation mode.

 Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

11-97

Clean Up
To complete the demo, save and close all models and remove the Model Slicer
configuration object.

save_system('sldvSliceCruiseControl_fixed')
save_system('sldvSliceCruiseControlHarness_fixed')
close_system('sldvSliceCruiseControl_fixed')
close_system('sldvSliceCruiseControlHarness_fixed')
close_system('sldvSliceCruiseControlHarness_sliced')
clear obj

See Also
slslicer | slsliceroptions | slslicertrace

More About
• “Highlight Functional Dependencies” on page 11-2

11 Model Slicer

11-98

Refine Highlighted Model Slice by Using Model Slicer
Data Inspector

Using the Model Slicer Data Inspector, you can inspect logged signals and refine the
highlighted model slice. To refine the highlighted model slice, select the time window in
the graphical plot by using data cursors.

In the Model Slicer Data Inspector, you can:

• View signals — Inspect logged signal data after model simulation. See “Inspect
Simulation Data” (Simulink).

• Select simulation time window — Define simulation time window by using data cursors
in the graphical plot or by defining the Start and Stop time in the Inspector.

• Highlight — Compute a slice for the defined simulation time window. See “Highlight
Functional Dependencies” on page 11-2.

Investigate Highlighted Model Slice by Using Model Slicer
Data Inspector
This example shows how to investigate and refine the highlighted model slice by using the
Model Slicer Data Inspector.

In the fault-tolerant fuel control system, the control_logic controls the fueling mode of
the engine. In this example, you slice the fuel_rate_control referenced model. Then,
investigate the effect of fuel_rate_ratio on the Fueling_mode of the engine. For
more information, see “Modeling a Fault-Tolerant Fuel Control System” (Simulink).

 Refine Highlighted Model Slice by Using Model Slicer Data Inspector

11-99

Step 1: Start the Model Slice Manager

To start the Model Slice Manager, open the fuel_rate_control model, and select Apps
> Model Verification, Validation, and Test > Model Slicer.

open_system('sldvSlicerdemo_fuelsys');

To select the starting point, open the fuel_rate_control model, and add the fuel-
rate port and the fuel_mode output signal as the starting point. To add a port or a
signal as a starting point, right-click the port or signal, and select Model Slicer > Add as
Starting Point.

Step 2: Log input and output signals

a. In the Model Slice Manager dialog box, select the Simulation time window and Run
simulation.

b. In the Record simulation time window, for the Stop time, type 20.

c. Select the Log inputs and outputs of the starting points.

11 Model Slicer

11-100

d. Click OK.

 Refine Highlighted Model Slice by Using Model Slicer Data Inspector

11-101

Step 3: Inspect signals

To open the Model Slicer Data Inspector, click Inspect Signals.

11 Model Slicer

11-102

 Refine Highlighted Model Slice by Using Model Slicer Data Inspector

11-103

The logged input and output signals appear in the Model Slicer Data Inspector. When you
open the Model Slicer Data Inspector, Model Slicer saves the existing Simulation Data
Inspector session as MLDATX-file in the current working directory.

You can select the time window by dragging the data cursors to a specific location or by
specifying the Start and Stop time in the navigation pane. To highlight the model for the
defined simulation time window, Click Highlight.

To investigate the Fueling_mode, open the control_logic Stateflow™ chart, available
in the fuel_rate_control referenced model. Select the time window for 13–15 seconds
and click Highlight. For the defined simulation time window, the Low_Emissions
fueling mode is active and highlighted.

Select the data cursor for the time window 6–7.5 seconds, with 0 fuel_cal:1. Click
Highlight. In the control_logic model, the Fuel_Disabled state is highlighted. The
engine is in Shutdown mode.

11 Model Slicer

11-104

See Also
“Highlight Functional Dependencies” on page 11-2 | “Refine Highlighted Model” on page
11-13

 See Also

11-105

Debug Slice Simulation by Using Fast Restart Mode
Perform multiple slicer simulations and streamline model debugging workflows by using
Model Slicer in fast restart mode. For more information, see “Get Started with Fast
Restart” (Simulink).

If you enable fast restart mode, you can:

• Perform multiple slicer simulations efficiently with different inputs, without
recompiling the model.

• Debug a simulation by stepping through the major time steps of a simulation and
inspecting how a slice changes. For more information, see “Use Simulation Stepper”
(Simulink).

Simulate and Debug a Test Case in a Model Slice
This example shows how the fast restart mode performs slicer simulations with different
test case inputs, without recompiling the model. You can simulate a sliced harness model
with a test case input and highlight the dependency analysis in the model.

Analyze the highlighted slice by stepping through the time steps. You use the simulation
stepper to analyze how the slice changes at each time step.

1 Open the sldvdemo_cruise_control model.

open_system('sldvdemo_cruise_control');

2 Set sldvoptions parameters and analyze the model by using the specified options.

opts = sldvoptions;
opts.Mode = 'TestGeneration'; % Perform test-generation analysis
opts.ModelCoverageObjectives = 'MCDC'; % Specify type of model coverage
opts.SaveHarnessModel = 'on'; % Save harness as model file
[status, files] = sldvrun('sldvdemo_cruise_control', opts);

After the analysis, the software opens a harness model
sldvdemo_cruise_control_harness and saves it in the default location
<current_folder>\sldv_output\sldvdemo_cruise_control
\sldvdemo_cruise_control_harness.slx. For more information, see “Simulink
Design Verifier Harness Models” (Simulink Design Verifier).

11 Model Slicer

11-106

3

To enable the fast restart mode, click Enable Fast Restart button .
4 On the Apps tab, under Model Verification, Validation, and Test gallery, click

Model Slicer. Model Slicer compiles the model.

Optionally, you can enable fast restart after opening the Model Slice Manager. Select

Simulation time window and click the run simulation button . To enable fast
restart, in the Record simulation time window, click the here link.

 Debug Slice Simulation by Using Fast Restart Mode

11-107

5 To add Starting Points, in the Model Slice Manager, click Add all outports..

The throt and target outports are added as the Starting Points.
6 You can simulate a test case and analyze the highlighted dependencies in the slice.

a In the Signal Builder block, select Test Case 4.
b

To simulate the test case, click Start simulation button, .

Optionally, you can simulate the model by using the Run button in the
Simulink editor. You can also simulate by using the Simulation time window in
the Model Slice Manager.

The slice shows the highlighted dependencies for the Test Case 4 inputs.

11 Model Slicer

11-108

 Debug Slice Simulation by Using Fast Restart Mode

11-109

11 Model Slicer

11-110

You can simulate a slice for different test case inputs and analyze the
dependency analysis.

7 Debug a slicer simulation by using a simulation stepper. For more information see,
“Simulation Stepper Access” (Simulink).

a To debug the simulation for the test case, in the Simulink Editor for the
sldvdemo_cruise_control_harness model, click Step Forward button. You
can view the signal values and the highlighted slice at each time step. For more
information, see “Simulation Stepping Options” (Simulink). The signal values and
the dependencies at T=0.010 appears.

 Debug Slice Simulation by Using Fast Restart Mode

11-111

b To debug the slice at T=0.030, step forward and view the signal values and the
highlighted slice.

11 Model Slicer

11-112

8 To complete the simulation stepping, click the Run button.

 Debug Slice Simulation by Using Fast Restart Mode

11-113

See Also

More About
• “Highlight Functional Dependencies” on page 11-2
• “Simulation Stepper” (Simulink)
• “Get Started with Fast Restart” (Simulink)

11 Model Slicer

11-114

Isolate Referenced Model for Functional Testing
To functionally test a referenced model, you can create a slice of a referenced model
treating it as an open-loop model. You can isolate the simplified open-loop referenced
model with the inputs generated by simulating the close-loop system.

This example shows how to slice the referenced model controller of a fault-tolerant fuel
control system for functional testing. To create a simplified open-loop referenced model
for debugging and refinement, you generate a slice of the referenced controller.

Step 1: Open the Model

The fault-tolerant fuel control system model contains a referenced model controller
fuel_rate_control.

open_system('sldvSlicerdemo_fuelsys');

 Isolate Referenced Model for Functional Testing

11-115

Step 2: Slice the Referenced Model

To analyze the fuel_rate_control referenced model, you slice it to create a standalone
open-loop model. To open the Model Slice Manager, select Apps > Model Verification,
Validation, and Test > Model Slicer, or right-click the fuel_rate_control model
and select Model Slicer > Slice component. When you open the Model Slice Manager,
the Model Slicer compiles the model. You then configure the model slice properties.

Note: The simulation mode of the sldvSlicerdemo_fuelsys model is Accelerator
mode. When you slice the referenced model, the software configures the simulation mode
to Normal mode and sets it back to its original simulation mode while exiting the Model
Slicer.

Step 3: Select Starting Point

Open the fuel_rate_control model, right-click the fuel-rate port, and select Model
Slicer > Add as starting point. The Model Slicer highlights the upstream constructs
that affect the fuel_rate.

11 Model Slicer

11-116

Step 4: Generate Slice

a. In the Model Slice Manager dialog box, select the Simulation time window.

b. Click Run simulation.

c. For the Stop time, enter 20. Click OK.

d. Click Generate Slice. The software simulates the sliced referenced model by using the
inputs of the close-loop sldvSlicerdemo_fuelsys model.

 Isolate Referenced Model for Functional Testing

11-117

11 Model Slicer

11-118

For the sliced model, in the Signal Builder window, one test case is displayed that
represents the signals input to the referenced model for simulation time 0–20 seconds.

 Isolate Referenced Model for Functional Testing

11-119

11 Model Slicer

11-120

Analyze the Dead Logic
This example shows how to refine the model for dead logic. The
sldvSlicerdemo_dead_logic model consists of dead logic paths that you refine for
dependency analysis.

1. Open the sldvSlicerdemo_dead_logic model, and then select Analysis > Model
Slicer.

open_system('sldvSlicerdemo_dead_logic');

 Analyze the Dead Logic

11-121

Open the Controller subsystem and add the outport throt as the starting point.

11 Model Slicer

11-122

The Model Slicer highlights the upstream dependency of the throt outport.

2. In the Model Slice Manager, select Refine Dead Logic.

3. Click Get Dead Logic Data.

 Analyze the Dead Logic

11-123

4. Specify the Analysis time and run the analysis. You can import existing dead logic
results from the sldvData file or load existing .slslicex data for analysis. For more
information, see “Refine Highlighted Model by Using Existing .slslicex or Dead Logic
Results” on page 11-80.

11 Model Slicer

11-124

 Analyze the Dead Logic

11-125

As the set input is equal to true, the False input to switch is removed for dependency
analysis. Similarly, the output of block OR is always true and removed from the model
slice.

11 Model Slicer

11-126

Investigate Highlighted Model Slice by Using Model
Slicer Data Inspector

This example shows how to investigate and refine the highlighted model slice by using the
Model Slicer Data Inspector.

In the fault-tolerant fuel control system, the control_logic controls the fueling mode of
the engine. In this example, you slice the fuel_rate_control referenced model. Then,
investigate the effect of fuel_rate_ratio on the Fueling_mode of the engine. For
more information, see “Modeling a Fault-Tolerant Fuel Control System” (Simulink).

Step 1: Start the Model Slice Manager

To start the Model Slice Manager, open the fuel_rate_control model, and select Apps
> Model Verification, Validation, and Test > Model Slicer.

open_system('sldvSlicerdemo_fuelsys');

 Investigate Highlighted Model Slice by Using Model Slicer Data Inspector

11-127

To select the starting point, open the fuel_rate_control model, and add the fuel-
rate port and the fuel_mode output signal as the starting point. To add a port or a
signal as a starting point, right-click the port or signal, and select Model Slicer > Add as
Starting Point.

Step 2: Log input and output signals

a. In the Model Slice Manager dialog box, select the Simulation time window and Run
simulation.

b. In the Record simulation time window, for the Stop time, type 20.

c. Select the Log inputs and outputs of the starting points.

d. Click OK.

11 Model Slicer

11-128

 Investigate Highlighted Model Slice by Using Model Slicer Data Inspector

11-129

Step 3: Inspect signals

To open the Model Slicer Data Inspector, click Inspect Signals.

11 Model Slicer

11-130

 Investigate Highlighted Model Slice by Using Model Slicer Data Inspector

11-131

The logged input and output signals appear in the Model Slicer Data Inspector. When you
open the Model Slicer Data Inspector, Model Slicer saves the existing Simulation Data
Inspector session as MLDATX-file in the current working directory.

You can select the time window by dragging the data cursors to a specific location or by
specifying the Start and Stop time in the navigation pane. To highlight the model for the
defined simulation time window, Click Highlight.

To investigate the Fueling_mode, open the control_logic Stateflow™ chart, available
in the fuel_rate_control referenced model. Select the time window for 13–15 seconds
and click Highlight. For the defined simulation time window, the Low_Emissions
fueling mode is active and highlighted.

Select the data cursor for the time window 6–7.5 seconds, with 0 fuel_cal:1. Click
Highlight. In the control_logic model, the Fuel_Disabled state is highlighted. The
engine is in Shutdown mode.

11 Model Slicer

11-132

 Investigate Highlighted Model Slice by Using Model Slicer Data Inspector

11-133

